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Smart Mobility: Introduction

* Mobile technology

* Real-time / on-demand
* Personalized

« Shared




Smart Mobility: Mobile Technology

Autonomous App-based Connectivity




Smart Mobility: On-Demand
Uber, Lyft...
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Smart Mobility: Personalized
Flexible Mobility On-Demand (FMOD)
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Smart Mobility: Shared

Car sharing, carpoolinglanes, ride sharing, bike sharing....




By The New Yorker, MAY 16, 2016

“Hang on—1I'll Uber us a school bus.” /



Research Agenda

Behavioral Data

Behavioral Solutions
Models/Optimization



Designing Effective Smart Mobility Solutions

- Efficiency =) optimization
- Personalization ™= pehavioral modeling

- Real-time mmm) app-based platform (FMS)

http://its.mit.edu/future-mobility-sensing

- Testing =) SimMobility

http://its.mit.edu/research/simmobility




Research Projects: Solutions

 Real-time Toll Optimization based on Prediction
* Flexible Mobility on Demand (FMOD)
» Autonomous Mobility on Demand (AMOD)

* Mobility Electronic Market for Optimized Travel
(MeMOT)
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Real-time Toll Optimization
based on Prediction
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Real-time Toll Optimization based on Prediction
Users

Guidance " Data fusion
Incidents
Self-calibration

Behavioral

models (e.g., route
choice, departure time
choice)

Prediction

Control _ Optimization
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Rolling Horizon

Time = 20:00. Execution Cycle 1 begins
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Time = 20:05. Execution Cycle 2 begins
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DynaMIT 2.0: System Architecture

>| Historical Database
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Real Time Data

State Estimation

Scenario Analyzer
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Case studies

* Area-wide tolling in Singapore
* Managed lanes in Texas
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Case Study: Area-wide dynamic tolling
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* Minimize total travel time in the network (fixed total demand)
- Historical dataset on incidents/road works (Sept. 15", 2011)
« Simulation period: 7:30 AM ~ 2:30 PM
* 13 toll gantries

- Toll rates changing at 5 min interval



Three Scenarios

[ Base case ]

[ Guidance ]

[

Guidance and
toll optimization

|

No guidance

Predictive guidance with DynaMIT

DynaMIT guidance and optimized tolls
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Reduction in Network Delay

2500

)
c
_§' 2000 _2 5(y
N 0
O 1500 -33 /
S
|_
© 1000
g
l: 500
L)
e

0

Base Guidance Guidance and
Toll
(V)ptimization
Scenario Travel Time of affected* Total Travel Time
drivers (veh. hrs) (veh. hrs)
Base 2,184 87,645
Guidance 1,648 (-25%) 81,626 (-7%)
Guidance & toll 1473 (-33%) 79.141 (-10%)
optimization

*Affected vehicles are defined as vehicles passing incident locations




Flexible Mobility on Demand
(FMQOD)
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Flexible Mobility on Demand (FMOD)

FMOD provides a personalized and optimized menu of
travel options in real-time.

Traveler

REQUEST

CHOOSE
Maximizing Taxi
Profit/Welfare Shared taxi
Mini-bus

Dynamic allocation of vehicles to services
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FMQOD Services

Flexibility to choose from different levels of services

« Taxi: door-to-door, private

 Shared-taxi: door-to-door, shared

Oo
c
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* Mini-bus: fixed stops, shared
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O
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o
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FMOD User Experience

Request:

Origin: A, Destination: B

Preferred Departure Time: 8:00 — 8:30
/ Preferred Arrival Time: 8:45 —9:00

REQUEST

Traveler

Offer:
taxi: DT: 8:25/AT: 8:45, $20
shared-taxi: DT: 8:27/AT: 8:57, $10

as the 4 passenger
mini-bus:  DT: 8:14/AT: 8:59, $5
as the 6" passenger

CHOOSE

Choice:
service: shared-taxi
DT: 8:27/AT: 8:57, $10

Supply Demand
N

Optimization
and
Preferences

Maximizing
profit/welfare
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Menu optimization

Phase1. Feasible product set generation
* Existing commitments

« Capacity constraints

* Scheduling constraints

Phase 2. Assortment optimization
Menu offered to the traveler from the feasible set
« Maximize profit/welfare based on a behavioral model (mode choice)
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Simulation Experiments in Singapore

1. Base Case
Taxi, Private vehicle,
MRT, Bus

Extended CBD area

2. Scenario with FMOD
Taxi, Private vehicle,
MRT, Bus, FMOD

Network configuration:

2706 links - 1294
intersections

More than 2000 loop
Sensors

46 MRT stations

Simulation setting

6:00 — 7:00 AM
Calibrated demand
(08/2013)

10% of all road users

have access to FMOD
500 FMOD vehicles
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Results: Offer and Choice

T: taxi, S: shared-taxi, M: minibus

Offer by operator

100%
90%
80%
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Offer Choice

100%
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TS g 60%
S 50%
s o 40%
S 30%
© 20%
M 10%
0%

Profit Consumer surplus Profit Consumer surplus

Operation strategy Optimization strategy

Large share of taxis with ‘Profit maximization’
Large share of shared-taxi with ‘Consumer
surplus’

Lower reject rate with ‘Consumer surplus’ -



Results: Operator and User Benefit

Comparison of different strategies (PM and CS)

Percentage difference b/w

PM and CS

25%
20%
15%
10%
5%
0%
-5%
-10%
-15%
-20%

‘Profit Maximization’ (PM)

Revenue Consu.urplus Wai ime

Percentage difference=(PM - CS) / PM *100

More revenue for the operator
Less waiting time for the user
‘Consumer Surplus Maximization’ (CS)

More consumer surplus
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Results: Network Performance

Comparison of FMOD (Max. ‘Consumer surplus’) and
Base Case with same demand

CDF

00 02 04 06 08 10

FMOD
Base Case

0.0 0.2 04 06 0.8 1.0

V/C ratio

 Significantly lower V/C ratio in FMOD w/o increasing travel-time
- 10~20% decrease in average V/C ratio
- Similar travel-time (avg. difference < 10sec)
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Autonomous Mobility on
Demand (AMOD)
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Autonomous Mobility on Demand (AMOD)

e Bus e MRT o Taxi e Private vehicles

\*‘

e Bus e MRT e Taxi e Private Vehicles-e Autonomous MOD
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Results: User Choices
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90 percWaiting Time (mins)
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Results: Fleet Performance
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Results: Network Performance

Path Length TravelTime Share Path Length TravelTime Share
1 10.6 km 17 min 13.0% 1 18.7 km 32 min 10.1%
2 10.1 km 14 min 32.4% 2 15.4 km 29 min 25.3%
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Mobility Electronic Market for
Optimized Travel (MEMOT)
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MeMOT: Concept

« Optimized and personalized
menu with information and
Incentives in a trip planner app

* Incentives based on real-time
system optimization
predicting network conditions
and energy savings
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MeMOT: Framework @

Travel
Choices

Optimization

Pgrsonaliged

Menu

s

User

MeMOT

Token<\:/alue & Trip Attributeﬂ

| )

User’s preferences

System
Optimization

Transportation
Network

Experienced
Network
Conditions
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MeMOT: 2-Level Optimization

1. A simulation-based system optimization framework that

predicts traffic, energy consumption and energy efficiency
In real-time.

2. A personalized menu optimization with information and
Incentives integrated into an app-based travel diary
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MeMOT: 2-Level Optimization Framework

VAN

Personalized
Menu

2

Choices

Trip
Information
&

Token Value

Users’
Preferences

@‘

Optimal Token

Real-time Data

Allocation

[]

L

0
0
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==

Simulation & State Prediction
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ila

Energy
Prediction

J

User Optimization

System Optimization
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Smart Mobility:
Optimization and Behavioral Modeling

Behavioral Data

Behavioral Solutions
Models/Optimization
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APPENDIX



MEMOT




MeMOT: 2-Level Optimization

User Optimization
(user 1, user 2, ...)

Pre-trip En-route
request request

- time

T roll period T roll period T

P
|

| |
Disruption

System Optimization



Goal: Generate reference token value and trip

SyStem Optlmlzatlon attributes for system-wide optimized scenario

Real Ti Dat Network, Historical

ca me ata

L/‘ demand/supply Historical Database
l parameters |

State Estimation
Supply ; : Avera
Trajectori o ge
Simulator ““L_é_"_ﬁ Energy Estimation energy
t savings
: for the
Demand ! Trip . Simulated rest of
Simulator = rageegts | User Optimization the day
Predicted network state
network state expected
and optimized State Prediction foken
token energy usage | v
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' Supply . . System
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User Optimization

System Optimization Goal: Generate a personalized menu
with trip attributes and token rewards

Database on User
System- Predicted Preferences

optimized trip
token value attributes

A

User’s preferences

Back-End | FMS-AdvisorApp
A
nfo of validated choice&
User ) awarded tokens User Behavior
Optimization Monitor
7'y Choice Trip tracking 1 Info of awarded
tokens & validated Interface
i B B AN thpp — — — T T T = |
Optimized choice set | |
I: Trip Menu —>{ Navigation | Dashboard €—> Marketplace | |
Choice |
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Trip Menu

754 AM

Trip planner

To

Departure Time

Order by

TOKENS

% DURATION

Dep

Arrny COST

* FEWER TRANSFERS
Dep

Ariy LESS WALKING
L TRAVEL MODE:

w ECIEICISEIG
9

Trip Dashboard

. O

Trip planner

To

Departure Time

Order by

L

Departure 8:07 AM ENERGY:
Arrival 817 AM TOKENS

$-8-4

Departure 8:05 AM ENERGY. ...

Amrival  8:25 AM TOKENS

$-m-E-F

Departure 8:00 AM ENERGY. ...

Arrival  8:40 AM TOKENS

9

Trip )ashboard

N

O

Departure 8:05 AM ENERGY. ...
Armrival  8:25 AM TOKENS: ..

walk 0.3 km

5 min

Park Street JJdsJi[f[dto Kendall
(2 stops)

12 min

Scroll
down

Click on the Dashboard icon to change page

and move to the user token wallet
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FMS Platform

PROCESS
gAA}’)’\ ED DATA
SMARTPHONE MACHINE
APP/ TRACKING [li-8 LEARNING z “fﬁfé'ﬁ'i%?
DEVICES BACKEND
VERIFIED
A DATA
Sensing \ / Context Info \
Technologies
2. GPs (1) GsMm * Transit Network
(@'-"% A * Points of Interest
= WiFi § Blustooth L gond Use D 1
. User Info - Activities
C)‘\ Accelerometer

\ / K / KJ_\ L Other info
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