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Introduction

Activity-Based Models (ABM) are disaggregate 

models that simulate individual decisions as random 

draw from choice sets, thus inserting random 

component to the results of model run.

The Tel Aviv ABM structure is similar to other activity 

based models described in the literature.

The model run is supposed to converge to the 

equilibrium between generated tours and 

corresponding level of service (LOS) data. 

2



Goals of current study

Experience of working with Tel Aviv ABM has 

revealed the need in conducting comprehensive 

analysis of the randomness of the model results, and 

in developing practical methods for the model 

stability monitoring and control.

Therefore, the goals of the current study are:

– Analyze sources of randomness and their influence on 

model results

– Produce practical recommendations for correct use of 

the ABM
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Literature Review

Rasouli and Timmermans (2012) presented a review 

of uncertainty in travel demand forecasting models.

Veldhuisen et al. (2000): effect of Monte Carlo draws 

on regional aggregate activity patterns 

Castiglione et al. (2003): variability of the forecasts 

due to random simulation error

Bowman et al. (2006): techniques to establish 

convergence based on MSA

Vovsha et al. (2008): discussion of practical ways to 

reach equilibrium within an activity-based model

Cools et al. (2011): uncertainty related to the 

statistical distributions of random components
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Tel Aviv Metropolitan Area



Tel Aviv Model 
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Main Modes: car driver, car 

passenger, taxi, bus, rail, Mass 

Transit (BRT/LRT)

About 1,000 Transit lines

1,219 Traffic Analysis Zones

About 1,500 Km2 and

3.3 million habitants in 2009

Access modes: walk, transit, 

Park&Ride, Kiss&Ride

About 10,000 regular links



Tel Aviv Model 

(structure and implementation)
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Implementation features

Disk space: 4 GB per project + 

3GB common space

Memory required: 2GB

PG: stand alone application

TG: Special C# application

Assignments: Parallel work 

with 3 EMME banks on single 

PC

Run time: 40 min per 

iteration, 10% population 

sample, Intel i7 Quad 

processor



Model Structure

The hierarchy of the models is fixed and the general 

model structure is similar to the Bowman and Ben-

Akiva (2001) approach.

The results from these models are translated into O-

D travel matrices that are assigned to the network. 

For details on the model application, see Bekhor et 

al. (2011) and Shiftan et al. (2003).

The following slide shows the main components of 

the Tour Generator.
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Main Activity

Work Education Shopping Other No tour

Time Period (15 alternatives)

Destination of the Main Activity (1219 alternatives)

Zone 1 Zone 2 Zone 3 … Zone 1219

Mode of the Main Activity (14 alternatives)

Car Driver Car Passenger Taxi Bus Rail LRT / BRT

P&R, K&R, Walk P&R, K&R, Walk, Bus

Intermediate Stops

No stops Before the main activity Before and AfterAfter the main activity
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Errors/randomness sources

There are three major model elements where the 

randomness or inaccuracy may occur:
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Randomly chosen persons

Random choice of tour attributes 

Assignment accuracy
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Error sources to address

Assignment accuracy

Tour Generator random component

Population sampling
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Assignment errors

Three variants of traffic assignment implementation 

were compared:

– Standard Frank-Wolfe algorithm (FW)

– Frank-Wolfe algorithm with parallel computation 

(FWP)

– Path-based traffic assignment (PBTA)

The implementation accuracy was evaluated using 

distribution of errors in link segments. 

This measure is convenient for evaluation and 

comparison of errors of different nature.
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Assignment results: Distribution of link 

volumes

• Number of links: 10900

• Average volume: 967 veh/hr

• Amount of links with volume 

higher than 80 veh/hr: 90%
TRIP

ASSIGNMENTS
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Assignment results: convergence
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Assignment results: run times 
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Assignment errors: conclusions

The analysis of the assignment implementations has 

shown that usage of path-based algorithm may 

practically eliminate the assignment error.

The time savings of the PB algorithm is further 

expanded due to extensive use of path analysis 

allowing to obtain various characteristics of 

assignment results very fast.

The FW and FWP algorithms require conducting 

additional time consuming assignments.

TRIP

ASSIGNMENTS
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Tour Generator random component

TOUR 

GENERATOR
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Tour Generator - Simulation error

The starting point of the analysis is the demand 

matrices that result from the TG component.

According to the flowchart presented in the previous 

slide, the individual random choices are aggregated 

to form the demand matrices.

There are over 30 demand matrices generated by the 

model for different modes and periods of day.

To analyse the TG randomness effects, we consider 

the car demand matrix for the AM period.
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The demand matrices are random

The random draw of choices for each person in a 

sample (Activity, Destination, Period of Day, Mode, 

etc.) results in random matrices, for example:

Although the overall distribution of trips in the matrix 

is quite stable, there are considerable changes at the 

cell level.

1506 1509 1601 1602 1605 1903 1921

1105 10 10 10 10 20 0 20

1106 0 0 0 0 10 0 0

1107 0 0 10 0 0 0 20

1108 0 10 10 10 20 0 0

1109 0 0 20 0 20 0 0

Destination

O
ri

g
in

1506 1509 1601 1602 1605 1903 1921

1105 0 0 0 0 10 10 10

1106 0 0 10 0 30 0 0

1107 0 0 0 0 10 10 10

1108 0 0 0 10 10 20 10

1109 10 10 0 0 10 0 0

O
ri

g
in

Destination

Car demand, Iteration n Car demand, Iteration n+1

TOUR 

GENERATOR
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Distribution of trips in the car demand 

matrix for different iterations
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Sparseness of demand matrices 

Parameter Average
Standard 

Deviation

Total matrix cells (1219 * 1219) 1,485,961 (100%)

Total non-empty matrix cells 270,101 (18%) 403

Total matrix cells with one trip 150,362 (10%) 382

Total non-empty cells in iteration (n),

corresponding to empty cells in

iteration (n+1)

117,068 (8%) 364

Total cells with one trip in iteration

(n), corresponding to empty cells in

iteration (n+1)

93,152 (6%) 346
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Distribution of OD time differences
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Averaging methods

Different averaging methods can be used to stabilize 

the model run results.

We consider 3 averaging methods, which are 

respectively presented in the following slides:

“MSA-R”:
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MSA-R method
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MSA-M method
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“Quasi-aggregation” method
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Convergence of averaging procedures

Averaging 

procedure

Number of 

iterations

Standard Deviation of 

VHT at last iteration 

(computed for 3 runs)

Average deviation of last 

iteration VHT from 

global average

MSA-R 20 120 -33

MSA-M 20 140 -9

Quasi-

Aggregation

16

(6 inner 

each)

35 43
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• The convergence rate of all procedures follows the “ �” rule of thumb:
• For MSA-R and MSA-M the VHT standard deviation decreases from the 

original 420 to 120-140 after 20 iterations, that is comparable to the 
expected	420/ 20 � 93.9;

• The resulting VHT standard deviation of 35 for Quasi-aggregate 
procedure after 16 iterations with 6 inner iterations each is even closer 
to 420	/ 16 ( 6 � 42.8	.



Convergence of averaging procedures 

as a function of run time
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Tour Generator (conclusions)

All three arrangements of model run with averaging 

results converge similarly.

Note that the MSA-M procedure requires more time 

for assignments than MSA-R, since for path-based 

assignment used the run time depends on number of 

non-zero cells in demand matrix, and in MSA-M 

procedure the number of such cells increases with 

the iterations, whereas in MSA-R this number is 

almost constant.

Further, Quasi-aggregate procedure has different 

proportion between number of TG runs and number 

of assignment runs, depending on amount of inner 

iterations.

TOUR 

GENERATOR
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Population Generator random 

component
PG generates list of individuals with random 

characteristics based on forecast of aggregate control 

variables. 

In addition, in order to accelerate the model’s run, a 

sample from the full population is often used.

– In this case, a sample is taken randomly, and trips of 

each person in a sample take proper weight to assure 

correct total number of trips in a system.

In this presentation only errors related to the 

population sampling will be addressed.

POPULATION 

GENERATOR
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Effect of Sampling: Model Convergence

POPULATION 

GENERATOR
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Effect of Sampling: Model Convergence
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Convergence of ABM for different 

sample sizes

Sample

size s

Average 

VHT

Standard deviation of VHT 

variations

Standard deviation after 

20 iterations

Observed Theoretical 

σ100%/ *

Observed Theoretical

σ/ +,

100% 174,700 420 420 120 92.9

50% 176,150 650 594 160 145.3

10% 180,320 1,250 1,330 250 279.5

POPULATION 

GENERATOR

The results indicate that the “ �” rule of thumb works both for the 
number of iterations and for the sampling rate. 
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Variations of VHT for different 

population sample size
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Population Generator - conclusions
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POPULATION 

GENERATOR

The sample size affects the stationary point of ABM 

results. 

In addition, population sampling does not bring any 

significant savings in number of iterations, if the goal 

is to assure certain accuracy of ABM results. 

This is because the sampling would require more 

iterations to converge to the same accuracy in 

comparison to the full sample.



Conclusions

Three sources of the ABM results instability were 

analyzed: random population sampling, random tour 

generation, and assignment procedures.

In line with previous studies, the effect of assignment 

procedures may be practically eliminated when using 

path based assignment algorithms.

The effect of randomness of tour generation may be 

decreased significantly by averaging the results of 

model run. 

The analysis of ABM stability allows developing 

practical measures for performing estimation of 

transportation projects with  controlled accuracy
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Further research

Population sampling increases the efficiency of the model 

run, but the relationship between model steady states 

with different samples required further analysis.

Two major issues emerged from the presented work:

Analysis of the ABM steady states

More profound study of errors related to Population 

generator: uncertainty of synthetic population created 

from limited set of aggregate control variables
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