A Nested Dynamic Discrete Choice Model of Collective Behaviors incorporated in Spatial Reference Group under Disaster Situation

BinN International Research Seminar #01-3

July 12th, 2014

The University of TOKYO

Junji URATA, Eiji HATO

Outline of Today's Presentation

- 1. Introduction & Main Idea
- 2. Methodology
- 3. Application
- 4. Conclusions

Introduction

We focus on collective behaviors of local residents under a disaster situation

- Collective behavior: Evacuation with others, Distributing information
- The collective behaviors influence their future states and their evacuation timings
- The supported people shrink danger but the supporting people grow danger through the collective behaviors
- Population synchrony trigger a concentration of collective behaviors in a local space.

Our Purpose:

- We model a process of contributing collective behaviors in a devastated area.
- A efficient local evacuation rule and a prompt information propagation system are needed and these things should be based on the collective behavior predictions

Our model has two main factors:

- specify the expectations of the future utility and risk by the introduction of a dynamic discrete choice model
- include the influence of others behaviors among their groups

Main Idea 1: Dynamic Discrete Choice

- Risk aversion behaviors take time and people should choose their action for their future states.
- They have the expectations of their future states and they can choose their optimal behaviors in every time slot.

Main Idea 2: Spatial Reference Group

- Residents who are located near have an approximately-same risk
- People who can't decide their behaviors by themselves refer the behaviors of neighborhoods
- A group consisting of people who are located near work as a reference group
- The effect of population synchrony are produced among the reference groups

O household Spatial reference group

2. Methodology

Choice Structure & Influence from Others

We employ the field as a virtual decision maker because we simply model influence of others' behaviors

--Comparing an "individual" and a "field" as a decision maker--

Case I. An "individual" as a decision maker

- Others' behaviors for a decision maker and for a counterpart should be considered in their decision making
- We add all the decision maker's behaviors to describe the whole area.
- The number of factor combinations is $(n-1)\times(n-2)\times n$

n: the number of people in the field

a) Considering Others acts for him/her

b) Considering Others acts for the counterpart

Choice Structure influenced by Others

We employ the field as a virtual decision maker because we simply model influence of others' behaviors

--Comparing an "individual" and a "field" as a decision maker--

Case II. A "field" as a decision maker

- The "field" compare all links which are the candidates of making collective behaviors and choose the optimal one.
- The number of all links is ${}_{n}C_{2}$ (=n(n-1)/2) n: the number of people in the field

c) Comparing all links

Formulation of Dynamic Discrete choice model

Explain generally the formulation of dynamic discrete choice model of a single-agent type

Value function
$$V(s_t) = \max_{j_t} \left\{ E_t \left(\sum_{\tau=t}^{\infty} \beta^{\tau-t} u_{j_{\tau}}(s_t) \right) \right\}$$

$$V(s_t) = \max_{j_t} \left\{ u_j(s_t) + \beta \int V(s_{t+1}) p(ds_{t+1} \mid s_t, j_t) \right\}$$

$$(1)$$

$$v(j, x_t) = u(j, x_t) + \varepsilon_t(j) + \beta \sum_{x_{t+1}} \overline{V}(x_{t+1}) p(x_{t+1} \mid x_t, j_t)$$
(3)

Choice Probability
$$P(j_{t} | x_{t}, \theta) = \frac{\exp(u(j, x_{t}) + \beta \sum_{x_{t+1}} \overline{V}(x_{t+1}) p(x_{t+1} | x_{t}, j_{t}))}{\sum_{j_{t}} \exp(u(j, x_{t}) + \beta \sum_{x_{t+1}} \overline{V}(x_{t+1}) p(x_{t+1} | x_{t}, j_{t}))}$$
(4)

t: time β : time discount rate $p(ds_{t+1} | s_t, j_t)$: transition probability

j: choice u: utility θ : parameters

s:state $x:observable\ state$ $\varepsilon:unobservable\ state,\ i.i.d.\ Gumbel\ distribution$

We now define the utility function of the field.

Inequality Averse for Link Utility

A preference of inequality averse is a factor for contributing collective behaviors

- The preference occurs from the difference of states between the two
- Some collective behaviors from a preference of inequality averse expose themselves to danger
- They make collective behaviors not only for their security but also for others' security

Formulate the link utility by using a travel cost and a gain of inequality averse A link utility: a state between the two which is influenced by collective behaviors

Utility: make a collective behavior

$$u_{ij}^{l} = -c_{ij}^{tr} - (1 - \alpha)c_{ij}^{ine} \tag{5}$$

Utility: non-make

$$u_{ij}^{l,non} = -c_{ij}^{ine} \tag{6}$$

$$c_{ii}^{ine} = |x_i - x_i|$$
: Inequality cost

 c_{ii}^{tr} : Travel Cost

 $\alpha \in (0,1)$: Parameter of inequality release

 X_i : State (represent their risk)

Dynamics of Link Utility

The link utility change by time along their risks and behaviors

- They cost travelling to others at the time slot and get a gain of inequality averse
- After the travel, they don't carry the cost but keep a gain of inequality averse

$$u_{ij}^{l}(t) = -(1 - \delta_{ij}(t)\alpha) | x_{i}(t) - x_{j}(t) | -\delta_{ij}(t)c_{ij}^{tr}(t)$$
(7)

 $\delta_{ij}(t) = 1$: Link ij make a collective behaviors at time t

 $\delta_{ij}(t) = 0$: otherwise

Setting Spatial Reference Group for Links

- 1) Divide Basic Groups
 - divide basic groups by spatial characteristics

Inter Links between A & B

- 2) Set Intra and Inter Links by basic groups
 - Intra links are composed in one basic group
 - Inter links are composed between two basic groups
 - A reference group is constructed of intra links in one basic group
 - → "Intra reference group"
 - A reference group is constructed of inter links between two basic groups
 - → "Inter reference group"

Reasons for Introduction of Reference Group

- 1. Taking on the characters of links
 - The reference groups can aggregate the links with taking on their characters
- They are common states (from risk and travel) because they are located near

Define the utility of the reference groups as the average of their link utilities

$$u^{r}(r, X_{t}^{r}) = \frac{\sum_{l_{ij} \in r} u_{ij}^{l}(t)}{n_{r}} \qquad n_{r} : the \ number \ of \ links \ in \ group \ r$$
(8)

- 2. Describe the effect of population synchrony by their norm under disaster
 - People are hard to decide their behavior by themselves because a disaster is a super low-frequency phenomenon
 - People refer the behaviors of neighborhoods because people who can't decide their behaviors by themselves need a norm under a disaster situation
 - A group consisting of people who are located near work as a reference group

Synergetic and Disjunction Effect

1. Synergetic Effect

- Links in the same reference group have the same norm
- When a few links make collective behaviors, other links also made the behaviors by their norm

2. Disjunction Effect

- This effect are produced in a inter reference group
- When both-side intra reference groups of a inter reference group have many collective behaviors, it is hard to make collective behaviors in the inter reference group of inter links

☐ link ☐ make a collective behavior ☐☐ Intra reference group () Inter reference group

Add the number of collective behaviors in the reference groups to the their utility

$$u'^{r}(r, X_{t}^{r}) = u^{r}(r, X_{t}^{r}) + f^{cg}(k^{r}(t)) + f^{dj}(k_{inter}^{r}(t))$$
(9)

 X_t^r : state of r, k: number of collective behaviors, f^{cg} , f^{dj} : function of effect

Field Utility

We give the utility of the field based on the above

• The field choose a reference group which have a collective behavior and the rest of the groups inevitably don't have collective behaviors

The numerical vector of the collective behaviors in each group:

$$K(t+1) = \left(k_{r_1}(t), \dots, k_{r_{m-1}}(t), k_{r_m}(t) + 1, k_{r_{m+1}}(t), \dots, k_{r_n}(t)\right)^T$$
(10)

Practically, the field decide this vector in each time.

Define the utility of the field as the sum of the utilities of the reference groups.

$$U^{f}(t,X_{t}) = \sum_{r} u^{r}(r,X_{t}^{r})$$

$$\tag{11}$$

Formation Process for Dynamic Model

Set the time slot for the application of dynamic discrete choice model

- The field choose "make" and a reference group at the same time slot until "non-make" is chosen
- We can evaluate the reference groups and the number of collective behaviors in the devastated area

Nested Dynamic Discrete Choice Model

- The Choice structure has a nest: "make/non-make".
- Formulate the dynamic nested logit model (Lorincz (2005))

(15)

(16)

$$v(r, x_{t}) = u(r, x_{t}) + \sigma \varepsilon_{t}(r) + \varepsilon_{t}(L) + \beta \sum_{x_{t+1}} \overline{V}(x_{t+1}) p(x_{t+1} \mid x_{t}, j_{t})$$

$$P(r \mid t, \theta, \sigma) = P(r \mid L, t, \theta, \sigma) P(L \mid t, \theta, \sigma)$$

$$= \frac{\exp((u(r, X_{t}) + \beta v(r, X_{t}) / \sigma)}{R_{L}} \frac{\exp(\sigma \ln R_{L})}{\sum_{L'} \exp(\sigma \ln R_{L'})}$$

$$R_{L} = \sum_{r \in L} \exp((u(r, X_{t}) + \beta v(r, X_{t}) / \sigma)$$

$$v(r, X_{t}) = \sum_{X_{t+1}} \overline{V}(X_{t+1}) p(X_{t+1} \mid X_{t}, r)$$

$$(12)$$

 $v(r, X_t) = u(r, X_t) + \sigma \varepsilon_t(r) + \varepsilon_t(L) + \beta v(r, X_t)$

 σ : scale parameter($\sigma \in (0,1)$)

 R_L : logsum variable

Estimation Method: NPL

Apply the Nested Fixed Point Algorithm to estimate parameters (Aguirregabiria and Mira (2002))

- NPL is a solution of the dynamic programming problem in the space of conditional choice probabilities
- These two algorithm are iterated until getting choice probabilities that are close enough to the fixed point

The inner algorithm:

It maximizes in Θ a pseudo-likelihood function based on choice probabilities $\Psi_{\Theta}(P)$ where P is an estimate of choice probabilities by the outer algorithm

$$\Theta^{I} = \arg\max_{\Theta} \sum_{t} \ln \Psi_{\Theta} \left(P^{I-1} \right) \left(r_{t} \mid X_{t} \right)$$
(17)

The outer algorithm:

It is a fixed point algorithm that computes $\Psi_{\Theta}(P)$ at the current parameter estimates to update the estimate of P

$$P^{I} = \Psi_{\Theta^{I}} \left(P^{I-1} \right) \tag{18}$$

I : iteration count, Θ: parameters

3. Application

The 2004 mudslide disasters in Niihama

•Two disasters were caused by typhoons on August 18 and September 29 in 2004

The August typhoon

- •a maximum rainfall of 55mm per hour
- •Mudslides left 3 people dead

The September typhoon

- •281mm of rainfall
- •Mudslides left 5 people dead

The Survey in Niihama

Survey(2004.9-10)

- •Surveyed residents' behaviors during these disasters by interviews (Oral communication)
- •Interviewed them about their awareness of the danger, risk management behaviors, and collective behaviors
- Collective behaviors include rescuing others, evacuating with others, accommodating evacuees, meeting and exchanging information.

Illustration of Collective Behaviors

- Nodes show households
- •Links show collective behaviors between the households

The dynamics of collective behaviors

Divide to Basic Group

23

Settings of Utilities

$$P(r \mid t, \theta, \sigma) = P(r \mid L, t, \theta, \sigma) P(L \mid t, \theta, \sigma)$$

$$u(r, X_t) = \sum_{r} u^{rr}(r, X_t^r)$$

$$u^{rr}(r, X_t^r) = \frac{1}{n_r} \sum_{l_{ij} \in r} \left(-(1 - \delta_{ij}(t)\alpha) \mid x_i(t) - x_j(t) \mid -\delta_{ij}(t)c_{ij}^{tr}(t) \right) + f^{cg}(k^r(t)) + f^{dj}(k_{inter}^r(t))$$

$$x_i(t) = \gamma^{dan} x_{dam}^i(t)$$

$$(19)$$

$$c_{ij}^{tr} = \gamma^{dis} x_{dis}^{ij}$$

$$(20)$$

$$f^{cg}(k^r(t)) = \gamma^{cg,inter} \ln(k_{inter}^r(t) + 1) + \gamma^{cg,intra} \ln(k_{intra}^r(t) + 1)$$

$$(21)$$

$$f^{dj}(k_{inter}^r(t)) = \gamma^{dj} \ln(k_{intra}^{r'}(t) + 2)$$

$$r': link to inter group r$$

$$(22)$$

$$v(non, X_t) = u^{non}(non, X_t) + \varepsilon_t(L^{non}) + \beta v(non, X_t)$$

$$(23)$$

$$u^{non}(non, X_t) = u(non, X_t) + \gamma^{rain} \exp(-x_{rain}(t))$$

$$\gamma: parameters$$

$$x_{dam}(t): a disaster risk, set by property damage and their rain accumulations$$

$$x_{dis}: the distance between their house$$

The transition probability of the number of the collective behaviors use the equation 13.

The other state variables determinably transit along the time

 x_{rain} : Amount of rain at the time

(9)

Estimation Result

- We simultaneously estimate parameters of the damaged district and the near pond district
- The time slot is 15minutes

Log likelihood(conv)

- The gain of inequality averse by collective behavior continue for 3 hours
- The limit of prediction of the future state is 1 hour in advance.

Parameters	result	t-value	result	t-value
γ^{dis}	-0.001	-1.508	-0.001	-3.415**
γ^{dam}	0.235	1.463	-0.003	-0.101
$\gamma^{cg,inter}$	0.430	2.281**		
$\gamma^{cg,intra}$	1.187	1.900*		
γ^{dj}	-0.613	-1.230		
γ^{rain}	1.305	2.260**	1.075	2.906**
α	0.300		0.300	
β	0.500		0.500	
σ	0.156	2.320**	0.109	3.461**
Number of choice		102		102
Log likelihood(0)		-341.53		-341.53 _N

-149.28

0.542

-341.53 Note: --- = not applicable ** = significant at .05 * = significant at .10

-201.37

0.399

Conclusions

- The spatial reference groups are defined by the norm under disaster situation
- Specify the spatial reference groups which have more collective behaviors
- Model the emergency behaviors with the expectation of future states by the nested dynamic discrete choice
- We demonstrate the synergetic effect

Future works

- Specify the relationship between the collective behaviors and the evacuation timing
- The model of the evacuation timing introduce the spatial reference behaviors

Thank you for your listening.

Mail: urata@bin.t.u-tokyo.ac.jp