A deep real options policy for sequential
service region design and timing

Rath, S., & Chow, J. Y. (2022).

C2SMART University Transportation Center

Department of Civil and Urban Engineering
https://arxiv.org/abs/2212.14800

Reading Seminar #2
2023/05/09(Tue)
Fuga Mayuzumi


https://www.linkedin.com/in/srushti-rath
https://engineering.nyu.edu/faculty/joseph-chow

MY Interest

Network and service design with vehicles-to-users matching and
scheduling in large-scale Network

Vehicle routing problem’s major requirements are often in trade-off
relationship

* Demand-responsive vs. Non-myopic
« Efficiency vs. Social Welfare

» Evaluating feasible matching patterns needs to compared



MY Motivation for reading this paper

Optimal matching in large-scale ridesharing market requires some
techniques to mitigate calculation cost for evaluating feasible
patterns.

» Introducing “Search Theory” for mitigating the enumeration cost
for combinatorial problem is one of my directions.

Today’s paper is tackling mitigation of enumeration by sampling
based on the stochastic nature of the variables



Authors’ Motivation

Target: Optimizing the MoD(Mobility on Demand) service region and
its timing under uncertainty in demand/market uncertainty.

D Introducing the concept of to evaluate the
multiple interacting real options such as deferral option and network
redesign option.

» Flexibility in decision making is considered

@ Propose a new variant "deep” real options policy using an
efficient recurrent neural network (RNN) based ML methodcr-rnn poicy)
» Sampling sequences to avoid the need for enumeration for large
scale implementation



Real options

Originally a concept for evaluating investments in corporate finance.

The value of this flexibility is known to increase as the volatility of the
underlying stochastic processes increases

= The greater the uncertainty, the more value there is to having the flexibility
to make a decision.



Classic search theory

» Stigler Model(1961) The Economics of information

The purchasing entity extracts independent prices from the price
distribution F under constant search cost c. As the number of
searches increases, the expected minimum price becomes smaller.
It is optimal to continue extraction until this positive marginal benefit
IS less than the search cost, which is called optimal stopping point.

Limitation of Stigler Model:
-> McCall(1965)

The buyer knows the price distribution and decides the number of finite
searches in advance, but this decision rule does not use the information
obtained by price search, which is not a reasonable assumption from the
standpoint of trying to buy at the lowest possible price.



Sequential search and Dynamic programming

* The optimal stopping rule of a sequential search can be calculated
under a dynamic economy with state variables that vary according
to the Ito process.

« Geometric Brown Motion(GBM) is the special case of Ito process, and
adopted as the stochastic process because it gives a simple form for the
continuation value of Bellman Equation.

« GBM validates that ¢ (x'|x) satisfies first-order stochastic dominance,
under which critical value uniquely split “stopping” and "continuing.”

Ref: https://core.ac.uk/download/pdf/71792194.pdf(in Japanese)



Real options

Expanded NPV = base NPV + option premium (1)

« Expanded NPV favors the value to react flexibly to future
uncertainty opposed to conventional base NPV(net present value)

* Option premium is divided into deferral premium and network
redesign premium (Chow and Regan, 2011a: previous work)

« For each investment candidate project h, what has been invested
before and what is to be invested at subsequent time steps can be
defined in terms of an investment sequence.



Real options

* The total number of possible sequences for a portfolio of H
compounded projects is H!

* CR policy selects the sequence that offers the highest initial option
value (Chow and Regan, 2011a).

* When the number of projects (H) increases, the possible number
of sequences (H!) increases drastically.

» Evaluating the CR policy value (=approximated value function) for
each of the enumerated sequences becomes computationally
expensive



Assumptions on uncertainty to model

» Demand are uncertain and assumed to evolve over time following
a stochastic process

« Zone interactions in terms of interrelated stochastic origin-
destination demand across zones.

* Heterogeneous volatility in the stochastic elements.



Sequential design illustration 11

Sequentially evaluating the for feasible set of order of service region and its timing
requires immense enumeration
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Fig. 2: Mllustration of sequential service region design and timing problem (for a set of .7 zones); green highlighted
service zones denote investment decisions in those zones (i.e., invest immediately) at time ¢, hashed zones represent
zones already designed (invested) in previous time steps, and no highlights at time ¢ represent zones where it is
optimal to defer the investment to a later time period.



Approach to forego enumeration

ML-based method to reinforce the method to calculate the
real option value in sequential service region design and
timing problem for MoD services

* Train recurrent neural network (RNN) based sequence classifier
with a small (randomly sampled) fraction of sequences

« Use the trained RNN to predict top sequences (i.e., sequences
with high policy values) from the large set of remaining candidate

sequences.

* The RNN training involves the novel use of a gap relative to a
reference policy value (Chow and Sayarshad, 2016) for avoiding
full sequence evaluation



Related Literature 1/3

A. Service region design

- Cordon design for congestion measures (Zhang and Yang 2014)

- Continuous approximation model of performance within region
(e.g., Daganzo and Newell 1986)

- Aggregate network models for taxi (Salanova et al. 2011,2014)

- Activity-based connected subgraph problem (Chow 2021)



Related Literature 2/3

B. Real options policy as approximate dynamic
programming method for network design and timing

- Monte-Carlo simulation (Boyle 1977)
more effective than finite difference binominal lattice especially under multiple and complex
uncertain elements, where uncertainties can be modeled as non-stationary stochastic

processes

- LSMC: Least Squares Monte Carlo (Longstaff and Schwartz 2001)
Multi option LSMC (Gamba 2003) for interrelated options are further proposed

- Network-based RO Model (Chow and Regan 2011a,b)

- Sampling technique to obtain an extreme value distribution (Chow
and Sayarshad, 2016)
X Estimation is prone to high variability based on sample size
X Policy that remains to those values remains unknown



Related Literature 3/3

C. Neural networks for sequence understanding

- RNN (Hochreiter and Schmidhuber 1997; Rumelhart et al. 1986)

Specifically designed for understanding sequences and significant success even
for non-trivial sequential patterns

- LSTM (special type of RNN) for predicting ride-hailing demand (Jin
et al. 2020)

- Transformer neural network (Vaswani et al. 2017)
has parameters in the order of hundreds of millions, and require self-supervised
learning based pre-training strategies, which is domain-dependent and not easy
to figure out

This paper don’t employ transformer but RNN for its exploratory
nature of this work since RNNs have far fewer parameters to learn
and pre-training is not necessarily required to learn non-trivial patterns




Demand specification

At each decision epoch t; € T,

the aim is to determine the investment/deferral strategy a; : {1, 0}
foreachh € H.;y,qg St. Hopyg € H

T = {ty, t,, ..., tg}: The set of discrete time periods
H: Set of candidate zones

H.,,: Subzone of h € H ; H,,, XH,,; represents OD pairs
Q;jc € Rsupl*lHsunl: OD demand for the MoD service attime t,, € T

« OD pair ij can be characterized by a stochastic process such as
Geometric Brownian motion (GBM). <- related to search theory

 This is assumed to be independent between zones though correlated
multivariate process can be considered with appropriate data.



Demand specification

Service demand at each OD pair ij satisfies GBM form

Stochastic process Q;;; follows the stochastic differential equation
below

dQ;j
QQ”ﬂ = UuQ;jdt + 6 Q;i:dW; (2)
i jit

dt: infinitesimal time increment
u: drift parameter (revenue rate)
o volatility rate of service demand
oy . zone-specific volatility is assumed (not for individual heterogeneity)

dW,~N (0, dt): Standard Wiener process



Investment payoff

Aggregated network model for urban taxi service to estimate OD
ridership for MoD service for hourly MoD ridership 4;;

_ —Y(c;i+0ogy . VoT . T1V;;+ow . TW

A’l] — Qij,l‘n exp Y( ij TV ij Tow ) (3)
VoT: Value of time of MoD users in service region  T1y/: Expected wait time

TIVU In-vehicle travel time between OD l] V: Congestion Sca”ng parameter [0,1]

¢;;: Trip price for OD ij ay, ay,: Customer perception factors for in-vehicle

time and wait time

Under the assumption that the taxi dispatching market where the number of
vehicle is optimum, following is the estimated wait time (Salanova et al. 2014)

1/3 —
TW = 0.8, v %/3 (4)
v: vehicle speed / A,: hourly MoD ridership in a region given by Eq.(5)

A’MZZZA‘U) lE%uba]E%ub (5)
LoJ



Investment payoff

Cumulative (peak hour) MoD ridership is calculated using Alg. 1

Algorithm 1 MoD ridership calculation for a subset of Z service zones in a region with Z;,;, sub-zones

1:

Initialize Ag;j = Qijs,; i, ] € Zub

Calculate Ao, = f(Aoj); i,J € Zup using Equation (5)
Calculate TWy = f(Aou,v) using Equation (4)

Initialize gap,,q.i; = 1000 (min), itr = 0, tol = 0.001 (min)
while gap,,.i;: > tol do

6:
7:
8:
9:
10:

Update itr =itr+1

Calculate /‘thr,z] — f(;l'ztr 1 t]aTVVItr 1,C,J,V0T TIsza% aIVyaW) l ] S %ub uSlng Equatlon (3)
Calculate Ay = f(Airrij); i, J € Zup using Equation (5)

Calculate TW;, = f(Aitru,v) using Equation (4)

Update 8apwait = TWit — TWisr—q

11: Cumulative ridership for Z zones = A;,,; OD ridership for Z,, sub-zones in Z zones = A ;;

Investment sequence s:{zy, z5, ..., Zy },

Cumulative ridership from addition of z; in a region with z4, ..., z,_; is returned
s Xz, using Alg. 1

Service zone ridership for z, can be calculated as X" — X7 "™

Zh-1



Investment payoff

* The investment payoff for zone z;, is ridership gained from
iIncluding zone z; minus a ridership threshold.

2, = Xz, = (Cwz +2(h—1)C) (6)

C,-. Within-zone cost for within-zone riders / C;,: inter-zone cost for inter-zone riders

* 2(h — 1) new connections with preceding h-1 zones in the
sequence become open by increasing one zone

{z1,25,23}: @ sequence for a region with three zones
h=1 h=2 h=3

el &l

Additional 1 within-zone link and 2(h — 1) inter-zone links are assumed E




Solution algorithm

* S denotes a set constituting H! sequences.

* To determine the optimal investment strategy subject to the
compound options, LSMC method is adopted for estimating the
policy value of each investment sequence s € S s.t. |S| =L

 For a given set of H zones and set of zone-specific volatility gy,
MC simulation returns each of the H,,,;, XxH,,;, OD pair service

demand by generating paths P by means of GBM for each t,, € T.

 Continuation value at t,, is then estimated given a realization of P



Solution algorithm

Search for the sequence that gives the highest option value (Chow
and Regan, 2011a) which forms the optimal investment strategy
(i.e., invest now or defer later for each zone h € H)

Estimate the option value for each of the enumerated sequences in
S using which is VFA method in approximate dynamic
programming (Powell, 2007) to solve the lower bound MoD service
region design and timing problem with stochastic variables.



Solution algorithm

There is increasingly high computational cost in determining the
policy value for all H! sequences for a large number of zones.

ML based CR-RNN policy to accelerate the calculations for
efficiently determining the optimal investment strategy for the
service region design.



CR policy

* CR policy is categorized into two main components

SEQ: Enumeration of possible H! permutations (ordered sequences
in set S) for H zones

ROV: Real option valuation of each sequence in S. The ROV
component majorly contributes to computation time in the RO
model, and hence, is the focus of this study.




Overview of value estimation steps

Optimal investment timing for H Input {H 7ones)

interdependentzones in a service region * Demand paramelers
*  Supply paramelers

« Zone volatility
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Fig. 3: CR-RNN policy model for determining which mobility service region zones to serve now and which to
defer (zones and sub-zones illustrated in the figure are PUMA and taxi zones in NYC respectively).




ROV: option value calculation

» Consider an investment sequence s € S where s = {z,, ..., z4}. The
value of the subsequent options is incorporated when valuing the

deferral option for any project z;, € s.

Bellman Eq.
for determining the value of the option to invest in a service region design as a

function of stochastic OD demand. p: the risk-free discount rate
immediate investment of z,, opportunity of investment of z; , 4

FZh (tn’XZh:tn) max{nZ} (tﬂ)XZh,tn) +F h+1 (tn7 Zhs tn) (1 +p) Z-tn—i-l —tn)]E [F (tn+1 thvn—i—] )]}’

X, ¢, - state variable of the project, that is, estimated MoD ridership in zone z;, at t,

Ty, (tn, th,tn): net present worth of an immediate investment of a project z; at t,,

E|F,, (tn, X2, ¢, )]: expectation function of all future investment benefits from the
contingent claim optimally exercised at a certain time. (representing the
continuation value ¢, (t,, X, ¢ ))



ROV: option value calculation

Eq.(8)-(10) show the continuation value calculation of service zone z; € s at
time step t,, for a sample path p

E H
bultn X (D) =E; | ¥ (149) ) T 7, (5.1 ®
i=n+1 r=h
with 7, (¢,,%,7,p) = {75:;, Uetan(Ph H 6= .Tzh (P) 9
0, otherwise
— ¢ (tn? Zhs tn(p)) z¢;;,(t"3 Zh tn Zﬁj tn htn( )) (10)

B; are the optimal coefficients for the J basis functlons obtained using least-squares estimation
7,,(p) :The optimal stopping time for a zone z, in the p-th path
0., ¢, € {0,1}: The decision to invest or exercise immediately in zone z, at time t,,

(1 is invest now / O is defer for later)
n

L; is Laguerre polynomials and can be calculated analytically. Ly(x) = exﬁ (e™*x™)



ROV: option value calculation

« If the payoff of z;, exceeds the continuation value at t,,, the investment is
exercised and the optimal stopping time is updated to t,; this is done
recursively from maturity tz to t;

« Using the optimal stopping times of each MC path (p € P), which includes the
earliest investment timing of each zone z;,, € s, the option value at ¢, is

determined

« The investment sequence that offers the highest option value for the initial

project is selected.
* 1, denotes policy value of sequence s. All n, for total L sequences are calculated.



ROV: option value calculation

« Some of the sub-sequences in H! are repeated and the cumulative benefits

(i.e. ridership and payoff) of the option z, for a sequence s; at time t,, can be
re-used for an option in another sequence s,.

« The effective computational cost of evaluating H! sequences is on the order of

H
H!
0 (hzl L XIPIXISIXpayoff(H)>

v" Incorporating endogenous nature of demand and investment decisions
... The above framework assumes exogenous demand and zone volatility

v Valuations of parameters regarding the investment payoff model
... This instead makes ROV calculations more computationally expensive

CR-RNN policy as an efficient approach to obtain the optimal strategy



CR-RNN policy for efficient service region design and timing decisions

Efficiently obtain the invest sequence out of H! sequences that offers the
highest initial project value, which forms the optimal investment strategy.

« Sampling M sequences (|S,,| = M) to train RNN that can identify a small set of promising
sequences

 Labeling the sequences based on policy values, assuming that they follow Weibull distribution
» 50 percentile of the Weibull CDF is selected as the threshold to label 1 or 0 for the sequence s

« Apply the RNN classifier on remaining sequences (|S,| = L — M) to get the probability
estimate of how likely the sequence is promising.

« ROV calculations are performed for K top-rated sequences (|S,| = K) out of the remaining.
By this way, ROV calculations are required only for M + K sequences out of L sequences.



lllustration of the CR-RNN policy

Optimal investment timing for H zones in

a service region

Input (H zones)
Demand parameters
Supply parameters |
Zone volatility i SEQ ! ' | PNRpax

..........

| L=H | SR )

l g - ™\ (s =\ g TIm——

f Seq1 e »| T Y1

g - threshold e

(_ Hzones )I:> Sm €S *| Labeling >
|Sm| =M - il .

 Randomly sample a small sequ [~*| Ny Y

- J - S - c—_

fraction of sequences (fracgeq)

from the population set S {5, cS—s, . _Ppredict ﬂ train
% ISy =L — :

« S, denotetheselected | 1 _____
subset of sequences P e o Top Kpromising | 5, <5,
such that |IS| = M pSrobabiIit'y sequences IS =K
(M = fTCleeq XL) scores TR

Fig. 4: Using the RNN based sequence classification in the CR-RNN policy for efficient ROV calculations



Classification of a candidate sequence s as a promising sequence

@ Input embedding layer:
Embedding for z;, denoted by emb(z;,)
which contains features of zone z, ([ sigmoid |

feed forward
network

Input sequence
4 U A T
Isl=H
Embedding size = 1),

Fig. 5: LSTM based RNN architecture for investment sequence classification.



Classification of a candidate sequence s as a promising sequence

@ LSTM layer: @

Hidden state of LSTM,, depends on both
emb(z;,) and the prewous unit LSTM,, _, state. [ sigmoid |

input gate/output gate/forget gate included. FRPT—
« Last unitis composed of hldden state (d,,,) and cell ek

state(cy,,)

Input sequence
521 2o, T Zip )
|s| =H
Embedding size = 1),

Fig. 5: LSTM based RNN architecture for investment sequence classification.



Classification of a candidate sequence s as a promising sequence

Hidden state (d,,,) is fed to a feed forward neural network
* lpp = Wppdg, + bFF [ sigmoid ]

@ Feed forward layer: @

d,, € R¥zis the final LSTM unlts hldden state, f
eed forward

and brr € R is the bias term network
¢ lFF e R

LSTM,,

v
L~
%5
~

§

Input sequence

5 {Zli|§2|‘i3}i.. Zy} |:>§ T I

Embedding size =1, emb(z,) emb(z,)

L ) L )
\

Fig. 5: LSTM based RNN architecture for investment sequence classification.



Classification of a candidate sequence s as a promising sequence

@ Sigmoid layer:

« Output of this layer is described as

y = 1 + e—lFF — O-(lFF) € [0;1] [ sigmoid ]

* ¥ is used as probability estimate---------------------- -
* Loss function |s / T :
' network ‘:
loss¢ = __2(375 log(F;) +i(1 — y5) log(1 = y5)) L
| zy !
| Ly L L3 lh—1 Ip l—1 |
Input sequence | LSTM,, » LSTM,, o LSTM,, —>- - --—> LSTM, (—*>- - -—> LSTM,, !
S: 421 2o L Zor ) : ¥ E
Embedding size =1, | emb(z,) emb(z,) emb(z3) emb(z;) emb(zy) |

X y. is a binary label for the sequence s

Fig. 5: LSTM based RNN architecture for investment sequence classification.



RNN model evaluation

Ntrue — Npred

Gap@K = xX100%

Ntrue

Nprea - Policy value of the best among the top K sequences predicted by ML model
Nerue - 17UE Value of the best sequence in L — M test samples

The lower the Gap@K, the better is the performance of the model performance
to varying input values



Experiment target area

4 different service region scenarios in Brooklyn NYC
* OD service demand in H,;, XH,,SUb-zones evolve independently as
GBM motions with zero drift and heterogeneous volatility

Scenario 1 (H = 7,Hg,, = 29) Scenario 2 (H = 7,Hg,;, = 20) Scenario 1 Scenario 2

(a) (b)

Fig. 6: Service region scenarios in NYC: (a) shows PUMA zones (service zones) along with zone IDs and PUMA
covered taxi zones (sub-zones) highlighted in red and black outline respectively, (b) shows the service zone volatility
values (defined in Section IV-Ba).



Demand data specification

» Potential demand for MoD services is assumed to come form the auto and
transit in the study are. Auto and public transit demand data is from Census
Transportation Planning Products Program (CTPP, 2016).

« Of the aggregated commute flow across different taxi zones using, 23.38%
was extracted as peak hour commute flow, and 60% of the above demand
was defined as the potential OD demand for MoD services in the experiment.



Demand data specification

a) Parameters for ROV calculations in CR-RNN policy: We assume the following for the ROV calculations.

e Maturity time (tg) = 5 years; 7 = {1,2,3,4,5}

o Number of basis functions (J) = 3

e Discount rate (p) = 2%

« Number of simulation paths (|Z?|) = 300

 Value of time (VoT) = 0.293 euro/min (assuming $20/hr as per prior studies (Holguin-Veras et al., 2012;
Ma and Chow, 2022))

o Customer perceived wait time factor (o) = 2.1 (Kittelson & Associates, 2003)

o Customer perceived in-vehicle time factor (ar;y) = 1 (Kittelson & Associates, 2003)

o Congestion scaling ¥ = 0.005 (based on Wong et al., 2001)

o Vehicle speed (v) = 19.31 km/hr (assuming 12 miles/hr average taxi speed in NYC (Liu, Vergara-Cobos
and Zhou, 2019))

o Trip cost (c;ij,i,j € ) = 2.42 euros (assuming a fixed price of $2.75%)

« Zone volatility values (Z,,;): {5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%)}
For each scenario with H zones, these values were randomly assigned
 Interzone cost (C;,): The average interzone ridership is used to define the interzone cost for service
zones
« Within-zone cost (C,,,): The ridership threshold that defines the within-zone cost for a set of service
zones is considered to be 40% of the average within-zone ridership



Demand data specification

b) Parameters for RNN model: : We consider the following input parameters for the RNN model

o Training sample ratio (fracs.,): {0.0012, 0.0028, 0.0044, 0.0068, 0.0084, 0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5}, where fracs, = 0.01 means 1% of total population sequences
(L) 1s used to train the RNN model.

« Top K sequences (K): {30, 50, 70}

« Embedding sizes (y,): {10, 50, 100, 150, 200}

« Positive to negative (training) sample ratio (PNR4x) = {0.01, 0.02, 0.05}, where PNR,,,4x = 0.01 denote
1% positive to negative samples in the M training set

« 20% of S,,, sequences are set as a validation set for tuning hyper-parameters
including epochs (up to 300) and embedding size from the list above.

* The detail of embedding is not written in the paper.



Optimal investment sequences

Scenario 1 Scenario 2

Scenario 3

D Invest now

/| Defer
|

Fig. 7: Optimal investment strategy for service zones (i.e., invest immediately or defer investment) obtained based
on the CR policy for the service region scenarios.



Comparison between scenarios of CR policy

Table I: Scenario-wise input parameters and CR policy values.

Scenario| Cy,; | Ci; || NPV Sequence with Option Sequence with Run Sequence policy value
highest option value lowest option time distribution
value (highest) value
1 49 | 68 {4001, 4002, 1025.17 {4006, 4003, 0.69 2 50
4005, 4004, 4004, 4012, hr 800
4012, 4006, 4002, 4001, o LI LTI
4003} 4005} ordered set. s
|
2 65 | 59 {4017, 4013, 1005.05 {4016, 4018, 0.77 g
4014, 4016, 4015, 4017, hr 850
4018, 4010, 4010, 4013, soo L LTI
4015} 4014} ’ Ordered se, 5
3 51 61 {4010, 4005, 1061.19 {4003, 4014, 4.17 g™ |
4004, 4015, 4010, 4015, hrs ::z
4014, 4003, 4005, 4011, AR
4006, 4011} 4006, 4004 } Ordered set, s
4 45 | 44 {4010, 4008, {4002, 4001, 4.32 £ |
4009, 4015, 4003, 4007, hrs |
4003, 4007, 4015, 4008, AT
4002, 4001} 4010, 4009} ordered set, s




Comparison between scenarios of CR policy

Scenario| Cy,; | Ci; ||| NPV Sequence with Option Sequence with Option Sequence policy value
highest option value lowest option value distribution
value (highest) value (lowest)
1 49 | 68 516 {4001, 4002, 1025.17 {4006, 4003,
4005, 4004, 4004, 4012,
4012, 4006, 4002, 4001, Il
4003} 4005}
2 65 59 684 {4017, 4013, 1005.05 {4016, 4018,
4014, 4016, 4015, 4017,
4018, 4010, 4010, 4013, 800
4015} 4014} P rgsers T
3 51 61 613 {4010, 4005, 1061.19 {4003, 4014, g™
- Al
4an1d 4nn3 4005 4N11 i “Ih |

« Compared to investing in all zones immediately based on NPV, there is
value waiting to invest in some zones using RO approach

« Lowest option values are 18-28 % lower that the highest option values
for 4 cases, indicating that zone ordering can have the impact.

AUUILVY 1. WJVVIIALLIY VYV 1DV Llltlut Bmmxxv»v;o CLLINA N AN IJ\JALVJ YAALUWDO.



Comparison between scenarios of CR policy

Table I: Scenario-wise input parameters and CR policy values.

Scenario| Cy,; | Ci; | NPV Sequence with Option Sequence with Option Sequence policy value
highest option value lowest option value distribution
value (highest) value (lowest
1 49 | 68 516 {4001, 4002, 1025.17 {4006, 4003, 738.4 850
4005, 4004, 4004, 4012, 800
4012’ 4006’ 4002’ 4001, e 0 1000 2000 3000 4000 5000
4003} 4005} ordered set. s
950 4 ‘
2 65 59 684 {4017, 4013, 1005.05 {4016, 4018, 800.97 . |
4014, 4016, 4015, 4017, 850
4018’ 4010’ 4010’ 4013, 8007 0 1000 2000 3000 4000 5000
4015} 401 4} Ordered set, s
3 51 61 613 {4010, 4005, 1061.19 {4003, 4014, 759.86 1
4004, 4015, 4010, 4015, .
4014’ 4003’ 4005’ 4011, 0 10000 20000 30000 40000
4006, 4011} 4006, 4004 } Ordered set. s
4 45 | 44 538 {4010, 4008, 801.07 {4002, 4001, 652.88 ”
4009, 4015, 4003, 4007, 075
4‘003, 4007, 4015’ 4008’ o0 10000 20000 30000 40000
4002, 4001} 4010, 4009} Ordered set. s




Comparison between scenarios of CR policy

ition Run Sequence policy value
ue time distribution
vest

38.4

00000

« When the number of service region
increases from 7 to 8, the average 0.97
computation time increase about 6 times,
holding the benefit of ML approach to
reduce the burden.

9.86

2.88

| “4UUZL, 4UVU1 j | | 4U1V, 4UVUY j |

Table I: Scenario-wise input parameters and CR policy values.



RNN-CR policy
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Fig. 8: Scenario 1 (7 zones) RNN classification model prediction gap (Gap@K) for different training ratios for
each K in top K (in legend) with (a) PNR,,,. = 1%, (b) PNR,,,. = 2%, (c) PNR, . = 5%.



RNN-CR policy

H=8 case
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Fig. 10: Scenario 3 (8 zones) RNN classification model prediction gap (Gap@K) for different training ratios for
each K in top K (in legend) with (a) PNR,,.. = 1%. (b) PNR.,.. = 2%, (¢) PNR,...., = 5%.



RNN-CR policy

Prediction gap vs. train ratio PNR 1.0 %
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 For PNR,,,,, 0.01 and 0.02, the prediction gap
monotonically decreases when training samples are
Increased.

Fig. 10: Scenario 3 (8 zones) RNN classification model prediction gap (Gap@K) for different training ratios for
each K in top K (in legend) with (a) PNR,,,. = 1%, (b) PNR,,,. = 2%, (¢c) PNR,,,. = 5%.




RNN-CR policy

 For PNR,,,, 0.05, however, the prediction gap get worse
* This is because the number of positive samples increases due to a lower

policy threshold value and can provide bad examples of promising
sequences to the model

iction gap vs. train ratio PNR 2.0 %
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Fig. 10: Scenario 3 (8 zones) RNN classification model prediction gap (Gap@K) for different training ratios for
each K in top K (in legend) with (a) PNR,,,. = 1%, (b) PNR,,,. = 2%, (¢c) PNR,,,. = 5%.



RNN-CR policy

Service | Training 0.12%| 0.28%| 0.44%| 0.68%| 0.84%| 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
zones ratio (%)
train time | 2.42 | 2.15 2.35 276 | 258 | 226 | 3.32 | 3.84 | 2.89 | 5.16 | 5.11 | 5.5 6.87 | 9.2 7.63
7 zones| test time 0.56 | 0.55 0.62 | 0.6 0.6 0.56 | 0.58 | 0.55 | 0.67 | 0.66 | 0.62 | 0.61 | 0.57 | 0.56 | 0.61
AUC 0.71 0.67 | 0.8 0.78 | 0.83 081 | 0.88 | 092 | 0.92 | 096 | 096 | 098 | 098 | 0.99 | 0.99
train time | 2.95 382 | 44 624 | 6.4 5.2 11.7 | 13.74| 13.78| 13.96| 22.22| 20.56| 22.24| 26.52| 26.94
8 zones| test time 2.93 282 | 3.14 | 3.0 336 | 2.87 | 286 | 2.69 | 2714 | 2.9 3.0 2.64 | 3.0 2.9 2.48
AUC 0.8 0.8 0.86 | 092 | 091 0.88 | 098 | 099 | 0.99 | 099 | 0.99 | 0.99 | 099 | 0.99 | 0.99

Table II: Average RNN classification model training time and testing time (in seconds) and test set AUC scores for
different training ratio (fracs,, in %) with PNR,,;x = 1%.

 AUC (Area under the curve) ROC (Receiver Operating Characteristics)
curve (Murphy, 2012).
 The AUC score (AUC € [0,1]) tells us how well the model is able to
distinguish between positive and negative classes.
* Achieved a substantial reduction in the overall computational cost



Summary

* Investment of Mobility on Demand (MoD) under demand
uncertainty was translated into Real Options strategies which can
incorporate the value of pending decision-making until the supplier
get more information about demand or environment.

« LSMC simulation to evaluate the multiple interacting real options.

 For large-scale cases, proposing a supervised ML approach (using
an RNN model) to address the high computational cost involved in
valuating all possible H! investment sequences via the CR policy.

 Train RNN classifier using the fractions of samples and determine
best-K sequences from the rest of sampled sequences.



=(In Japanese)




% A= V4

» BRFEILY OB RETEZRET BISHI->THRAIRELEHHA AL,
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JJR_I“"'ISEA:L\OT: EEREDRRIEEEOCEE, LUKEHINEE
FTEHREMZED, HAHNIEKREGIBREWSAREMZHT
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TavlfEl &by, ERMEEFMICENTAH T aVMEZRIET
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A Wil

SN T

ERIETE : R HILIBEDBHREFIAL T, XEDOEEIAB D EEZXFEI=-ODBHEH

S EE%IEO)&B%JTEEI DNWTHZDHAFEZZEL TCHRMICERRATEIZHEAAD
- HRMAEMEDREE(ER)ICFDRICRETHAHFERZMA-LDER/NMETEHES
Z25. EREPEOERDOHFEIIEEXIZENTLSIDOT, BEFHFXOEBEAZELLGET
ZI5|LCHEIFEZR LS D, HERITHZET HARIFIRENFET HERELTETILIEZITS.

o« RRHIRDUVATLREZFANSEFOROERDEFEZIRL T<NSEEHFEEE AR

#(cost-to-go function)EFES. CHOREBMNERETHSET S L, BIRLGEIREIRIDOMREIL, 5%
M EREIMORIREICIFEE T A ENTESD, ERICITIRED MM KRIZAHY, BIREEIC
ﬂ?éﬁﬂﬁﬁwﬁﬁﬁﬁu\w’c CDEIBT7TA—FIEAFEETHS. EENLZTTO—F
ELTIE, RREBZKY/INSLZERIZEZLIEFEANINLELTREL, HEAIMLIZHT HE
ZEERB#E, VI al—2a v ERAVGEMMICHET AL THBEIEEITY. 1HEA
DRIVIEHRET HEBEDEBEEZRELTROONS. £EESTEOHITIE, (—HITIEHEN)
BHRITHTHEEENFEHANVNLTHY, EnEETEIOFHITIE, #high| D iEFE DL
ENEHERIMNLDIEFEELS.




Rolling horizon method

HERIAECTENGETILE, BEZLEO-ARABOEFEMNLZETIILOBIZIEIXRELGLX vy T
B DREIEETIILEEZAFRICIEITHEERFTROBYIZTVLVHNEE
s FHEELEREDBERIIHNISELNDT, ZEOHFENELTERIMDIGEHRTETILEEBETLION
EREIMERMTTIL. CCICHMAED ICONTREDREEIBERNRLICHEELTLEF%E
HARAATEOIO—) T RSA X AR
« 4 BRI DEETBEZTIERL, TNERFETHEIZE - THEONTEEIZLI=A>T, D1
BRI DEEFITD.
- TEMBFBALI-RE, I TIZREIZE -1 ERSIXEEL, ZDEDA4ER S DX ESTEE
ERRLEY. CNIXEIRENOEASESBRBEETHDEEZIEMRL TSI EIZHET S.
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* ROFmEBEFLBELLTRAZSENTE, BIRETEIETHEITS

« Bl FA)AOA—ILAT LAV DERIL(ZFAZIVT DOHIE po9ky)
ERERDA T DOP T T FTOEEDBZTHEFRIITERIGEL T A
NoA—)VATavEEZD. BATENREETORZZ ¢t ELT, WHIREE

DfifEZE X(t) = x £5 5. BEMEOHEILAIE (X (1)} NRMAT S5V EB) (X

#HWiener@1g)IZHD, 94hHL X ()} A

dX(t) = uX(t)dt + cX(t)dB(t)
TB() [T TV ERIZRSET . 1EFIITEMEE K ELI-EE, A T3V %
BRIt TITREL =R O EAFFIGF ¥, 1L,
Y. = max{X(7r) — K, 0}
E13D. L= >TRIEIF E(YLX(®) =x) ZRKIZCT S t € [t,T] K& DHR1E
FILEREETED.
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e StiglerE7JL(1961) The Economics of information

BAFTKII—EER cOTTHHA F oML EEOHMEBEITS.

N ERECOR/MERDEDIHEEE N — 1 BEETOLOELLEKT

8 Y—FORABRIZIETHS. TEHEY —FHNEZLHEER
IMEFSERFHEIL/NSKGED. COEDRFFERAT—FIARAMNER)Z T

N 5FE CHEZ#EIT A ENZEBETHS = xBEIELER

Stlglel’:ET LD *ﬂ.’,*” - https://www.glocom.ac.jp/wp-content/uploads/2020/10/78.pdf
-> McCall(1965)

BWF(IEE D HEE>TLVHD TS

ATl fab =

I3

A

DY —FHRZRET HH,

DREIN—ILTIHEE Y —FICEoTHoNIZFHREFMALTE LY, TESE

[TZIMEIR TEHFHETHILEGELTIEEH

3R TE TIXAFL Y.

: -> Salop&Stiglitz(1977)
Stlglerd) DHIFEZEATHAIEVNFOITEIDAZSMLTHEY, HigETHD

T FDRTALEIN T
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* McCall

BFOREMICA>TZAEN— ?%L‘fn?b\d):;ﬁ’éa_kﬁ’]lw R 59 D&
R —F-ETIVEREL, HOBFAERBRME)ZIRICLT, EnLL

TOBREEICHLZEZZRL, T LU EDOENISHL S —F#iGZE
IRTRLET = LE)L—)L (optimal stopping rule) ZE (V-

BRI Y —F BB D : Weitzman®T JLIZ L BPandorafs &

EERZEHIARI—O S HIEOEEICIEEFE ORI 28 ) B &R
BhFons. ;UDJ:’)EEUH%;JJ ] CHA SR RS «*‘:O)i’J%F'“S( £-oT

BRMEBENEENSIIEIRR T, BREFZEMLOTSTOY—
FHREEFIHITHY, SROEXRZHBARDIEEDHITIKEFT S.
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« R
DT T,

% IE AT
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(L Ao TE BT SR EMEY —FHRET HBMEF

R KRR ST,

EiRFEINEEINSECATERINS

ﬁzﬁzﬁ’aﬂ—%ﬁﬁh%<rﬁ1ﬁlhb )L

« BrownZ%{a[5& &fj(geometric Brown motion) L {REBFE D 5%k —X

« 1R IRMIEIZRS T SBellman AKX T L CRLEELARFE O ERFREER
BIETHA-OITEHRAIND

o FHATEHEERDT o(x'|x) NIEDRIIERE M Z D=8 — R ZRE AL (first-order
stochastic dominance) D E#-Zimi-9 _&FREET S

« COEBETIZEWVT, BBFREFIR TELEEMMEN—ZIZHEITES
. Eﬁﬁjﬁ(:ﬁt\f%ﬂ:wﬁ&12.%;..1%@75\1’3%1!:L<, TNENNEREEEFETS
ELVEMFEHDEHET, BRREDEZDEDNFEILSINDS

o CHEEBESDHEFE M (smooth-pasting condition) &L, B EE TIIEREREESE
W - YR - EYFREF N LHED

Ref: https://core.ac.uk/download/pdf/71792194.pdf(in Japanese)



