# Careful Use of Machine Learning Methods is needed for Mobile Application A case study on Transportation-mode Detection

By Yu et al (2013)

Presented by
Muhammad Awais Shafique

#### Contents

- 1. Introduction
- 2. Transportation-mode detection
- 3. Practical use of SVM
- 4. Pitfall of CV accuracy
- 5. Model size reduction
- 6. Fast training by optimization

- 7. Multi-class SVM method
- 8. Non-machine learning issues
- 9. Conclusion

#### Introduction

- Machine learning methods are often applied as a black box.
- Example is transportation-mode detection.
- Collect data, use algorithms and compare results.
- Default settings may not be the best one.
- Evaluation criterion (e.g. cross-validation) may not be appropriate.
- Some methods may not be applied due to resource constraints of mobile phones.

This paper focuses on using SVM and how the performance can be optimized.

#### Transportation-mode Detection

- The detector can use only up to 16 KB of memory.
- Data consists of log files containing signals from gyroscope, accelerometer and magnetometer.
- Classification was done among

Still, Walk, Run, Bike, Others

- Five features were extracted by calculating mean or standard deviation of the signals.
- Decision trees, AdaBoost and SVM were employed.

#### Transportation-mode Detection

#### Results

| Classifiers   | CV accuracy (%) | Model size (KB) |
|---------------|-----------------|-----------------|
| Decision Tree | 89.41           | 76.02           |
| AdaBoost      | 91.11           | 1500.54         |
| SVM           | 84.72           | 1379.97         |

#### Practical use of SVM

- Worse SVM performance may be because of lacking
  - Data scaling
  - Parameter selection
- Given label-instance pairs  $(y \nmid 1, x \nmid 1) \dots (y \nmid l, x \nmid l)$  with  $y \nmid i = \pm 1, x \nmid i$   $\in R \upharpoonright n$ ,  $\forall i$  as the training set. (Primal problem)

$$\min_{\boldsymbol{w},b} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{l} \max(1 - y_i(\boldsymbol{w}^T \phi(\boldsymbol{x}_i) + b), 0).$$

 Because w becomes a huge vector so dual optimization problem is solved. (Dual Problem)

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} - \boldsymbol{e}^T \boldsymbol{\alpha}$$
 subject to  $\boldsymbol{y}^T \boldsymbol{\alpha} = 0,$  
$$0 \leq \alpha_i \leq C, i = 1, \dots, l,$$

• Where  $Q_{ij} = y_i y_j \phi(x_i)^T \phi(x_j) = y_i y_j K(x_i, x_j), \quad e = [1, ..., 1]^T$ 

- $K(x \downarrow i, x \downarrow j)$  is the kernel function.
- Default kernel function in LIBSVM is RBF (Gaussian) kernel

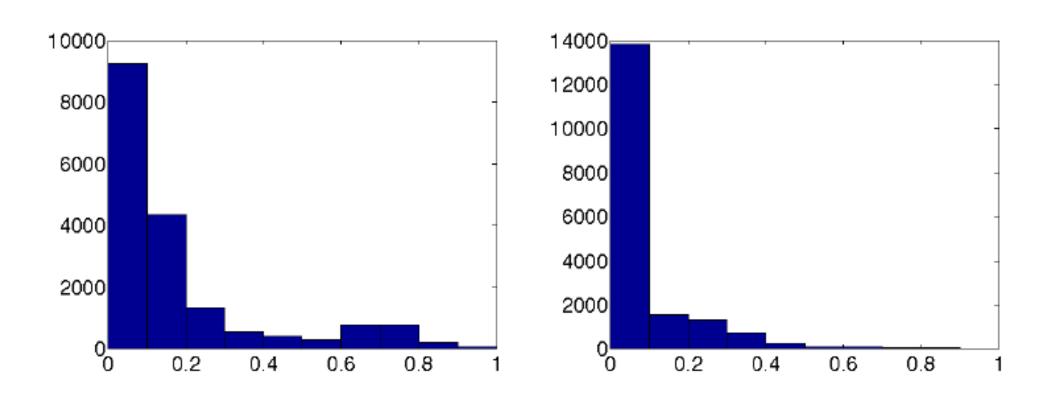
$$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = e^{-\gamma \|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2}$$

The optimal solution satisfies

$$w = \sum_{i=1}^{l} \alpha_i y_i \phi(x_i).$$

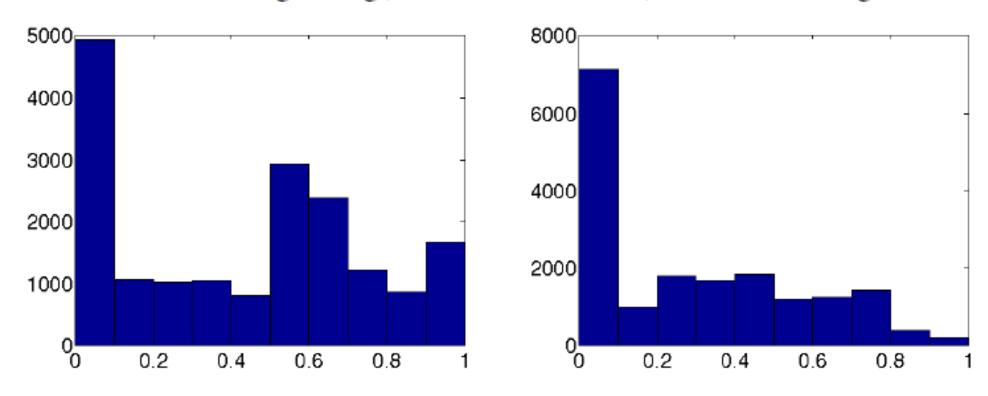
Linear scaling of features is done

$$\frac{(x_i)_s - \min(x_t)_s}{\max(x_t)_s - \min(x_t)_s}, \forall s = 1, \dots, n.$$



(a) Linearly scaled to [0,1].

linear scaling  $\rightarrow$  log(feature value + 0.01)  $\rightarrow$  linear scaling.



(b) A log-scaling procedure by (7).

- Parameter selection
  - Regularization parameter (C)
  - Kernel parameter ( $\gamma$  in case of RBF kernel)

$$C \in \left\{2^{-1}, 2^0, \dots, 2^9\right\} \text{ and } \gamma \in \left\{2^0, 2^1, \dots, 2^8\right\}$$

Select the one achieving the best five-fold CV accuracy

Results

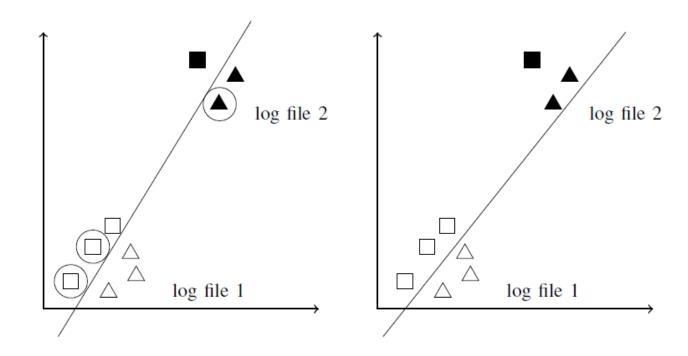
| SVM procedures                       | CV accuracy (%) |
|--------------------------------------|-----------------|
| Linear scaling + parameter selection | 89.20           |
| Log scaling + parameter selection    | 90.48           |

#### Pitfall of CV accuracy

- Although CV accuracy is most widely used evaluation measure but it can over-estimate the real performance.
- Assume each user records 10 log files and each log file generates 100 feature vectors.

```
user 1 log file 1 x_1, \dots, x_{100} log file 2 x_{101}, \dots, x_{200} : log file 10 x_{901}, \dots, x_{1000} user 2 log file 11 x_{1001}, \dots, x_{1100} :
```

- Feature vector in the same log file shares some information.
- In CV procedure if data from one log file appear in both training and validation sets, then the prediction becomes easy.



- Therefore the standard instance-wise split of data may easily overestimate the real performance.
- To eliminate the sharing of meta-information, data split should be made at higher level such as logs or users.

| CV strategy      | SVM CV accuracy (%) |
|------------------|---------------------|
| Instance-wise CV | 90.48               |
| Log-wise CV      | 83.37               |

 Although log-wise CV is more reasonable but its better to have an independent test set collected by a completely different group of users.

| Classifiers   | CV accuracy (%) | Test accuracy (%) | Model size (KB) |
|---------------|-----------------|-------------------|-----------------|
| Decision Tree | 89.41           | 77.77             | 76.02           |
| AdaBoost      | 91.11           | 78.84             | 1500.54         |
| SVM           | 90.48           | 85.14             | 1379.97         |

 The result confirms that instance-wise CV may severely overestimate.

• Similarly in "Towards physical activity diary: motion recognition using simple acceleration features with mobile phones" by J. Yang (2009)

| Reported CV accuracy   | 80 – 90 % |
|------------------------|-----------|
| Reported Test accuracy | < 70 %    |

|               | 2 folds | 5 folds | 8 folds |
|---------------|---------|---------|---------|
| CV accuracy   | 85.05   | 83.37   | 82.21   |
| Test accuracy | 85.33   | 85.14   | 84.66   |

#### Model size reduction

- Although good accuracy achieved but the model size is much larger than 16 KB.
- Large size due to storage of optimal solution  $\alpha$  and support vectors.
- Because it is a multi-class problem and LIBSVM uses one-against-one method so for k-class problem the model size is

$$\binom{k}{2}$$
 × # support vectors ×  $(k+n)$  × 4bytes

• Where *n* is the number of features.

#### Model size reduction (Cont.)

• To reduce size use polynomial kernel.

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + 1)^d$$

- Where  $\gamma$  is the kernel parameter and d is the degree.
- The kernel is the inner product of two vectors  $\phi(x \downarrow i)$  and  $\phi(x \downarrow j)$
- If d = 3

$$\phi(x) = [1, \sqrt{3\gamma}x_1, \dots, \sqrt{3\gamma}x_n, \sqrt{3\gamma}x_1^2, \dots, \sqrt{3\gamma}x_n^2, \dots, \sqrt{3\gamma}x_n^2, \\ \sqrt{6\gamma}x_1x_2, \dots, \sqrt{6\gamma}x_{n-1}x_n, \gamma^{3/2}x_1^3, \dots, \gamma^{3/2}x_n^3, \\ \sqrt{3\gamma}^{3/2}x_1^2x_2, \dots, \sqrt{3\gamma}^{3/2}x_n^2x_{n-1}, \sqrt{6\gamma}^{3/2}x_1x_2x_3, \dots, \sqrt{6\gamma}^{3/2}x_{n-2}x_{n-1}x_n]^T.$$

## Model size reduction (Cont.)

Only w and b need to be stored.

$$\binom{k}{2} \times (\text{length of } w + 1) \times 4 \text{bytes}$$
$$= \binom{k}{2} \times \left( \binom{n+d}{d} + 1 \right) \times 4 \text{bytes}.$$

• For d = 3, the model size turns out to be 2.28 KB

#### Model size reduction (Cont.)

Comparison among kernels

| SVM method        | Test accuracy (%) | Model size (KB) |
|-------------------|-------------------|-----------------|
| RBF kernel        | 85.33             | 1287.15         |
| Polynomial kernel | 84.79             | 2.28            |
| Linear kernel     | 78.51             | 0.24            |

#### Fast training by optimization

- 1. The training of kernel SVM is known to be slow.
- 2. Because of using  $K(x \downarrow i, x \downarrow j)$  rather than  $\phi(x \downarrow i)$  or  $\phi(x \downarrow j)$ , the setting is very restricted.
- For linear SVM the optimization problem becomes

$$\min_{\boldsymbol{w}} \quad \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{l} \xi(\boldsymbol{w}; \boldsymbol{x}_i, \boldsymbol{y}_i)$$

• Where  $\xi(w;x\downarrow i,y\downarrow i)$  is the loss function

# Fast training by optimization (Cont.)

Commonly used loss functions

$$e^{-y_i w^T x_i}$$
 logistic regression 
$$\max(1 - y_i w^T x_i, 0)$$
 hinge-loss (11-loss) SVM 
$$\max(1 - y_i w^T x_i, 0)^2$$
 squared hinge-loss (12-loss) SVM

• The three loss functions are related so they give similar test result.

# Fast training by optimization (Cont.)

- Comparison scenarios
- I. LIBSVM: polynomial kernel with hinge loss.
- II. LIBLINEAR (primal): Linear SVM with squared hinge loss.
- III. LIBLINEAR (dual): Linear SVM with squared hinge loss.

## Fast training by optimization (Cont.)

|               | LIBSVM   | LIBLINEAR |         |
|---------------|----------|-----------|---------|
|               |          | Primal    | Dual    |
| Test accuracy | 84.79    | 84.52     | 84.31   |
| Training time | 30519.10 | 1368.25   | 4039.20 |

- LIBSVM and LIBLINEAR (primal) give similar accuracy.
- Training time of LIBSVM is significantly high.
- In theory, both primal and dual solvers give exactly same accuracy.

#### Multi-class SVM

- SVM is designed for two-class classification.
- For multi-class two methods are used

- One-against-one (Stores k(k-1)/2 weight vectors)
- One-against-rest (Stores k weight vectors)

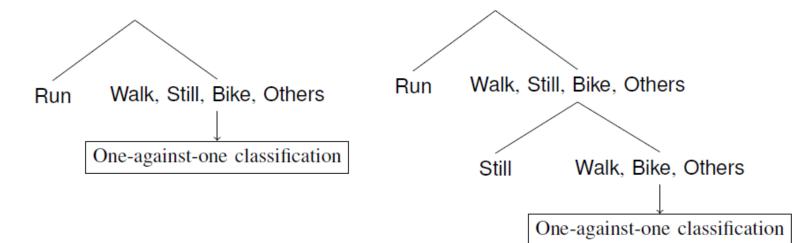
• For 5 transport modes, we need 10 and 5 vectors respectively.

# Multi-class SVM (Cont.)

#### Results

| SVM method       | Test accuracy (%) | Model size (KB) |
|------------------|-------------------|-----------------|
| One-against-one  | 84.52             | 2.24            |
| One-against-rest | 83.95             | 1.12            |

# Multi-class SVM (Cont.)



- (a) A hierarchical setting to identify the mode Run first.
- (b) A hierarchical setting to identify the modes Run and Still first.
- a. 1 + 4(4 1)/2 = 7 weight vectors
- b. 1 + 1 + 3(3 1)/2 = 5 weight vectors

# Multi-class SVM (Cont.)

#### Results

| SVM method       | Test accuracy (%) | Model size (KB) |
|------------------|-------------------|-----------------|
| One-against-one  | 84.52             | 2.24            |
| One-against-rest | 83.95             | 1.12            |
| Hierarchy 1      | 84.46             | 1.57            |
| Hierarchy 2      | 84.53             | 1.12            |

#### Non-machine learning issues

Feature engineering

- Extracting important features is one of the most crucial steps.
- Added two frequency-domain features.

- a. Peak magnitude: index of the highest FFT value.
- b. Ratio: ratio between largest and second largest FFT values.

# Non-machine learning issues (Cont.)

#### Results

| CV strategy      | 5 features | Adding 2 FFT features |
|------------------|------------|-----------------------|
| Instance-wise CV | 89.90      | 92.98                 |
| Log-wise CV      | 85.05      | 89.26                 |
| Test accuracy    | 85.33      | 91.53                 |

# Non-machine learning issues (Cont.)

Use of Domain knowledge

- Using information from past predictions.
- Power saving by not enabling the classifier in some situations.

#### Conclusion

- Direct use of a machine learning method may not give satisfactory results.
- Careful evaluation criterion must be chosen as this study showed that standard CV accuracy can slightly over-estimate.
- Practitioner should take care while employing classifiers and should have deeper understanding of the methodology.