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Introduction
• This lecture introduces advanced discrete 

choice models, including
– advanced closed-form models, and 
– advanced open-form models

• Understanding such advanced models are 
important not only for utilizing advanced 
models, but also for understanding the 
limitations of conventional models
– Advanced models are often costly 

(computational cost, etc.), but need to be 
understood even when the conventional models 
are just applied
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Genealogy of discrete choice models
[based on Hato (2002)]
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Multinomial logit (MNL)
(Luce, 1959)

Multinomial Probit (MNP)
(Thurstone, 1927)

Nested logit (NL)
(Ben-Akiva, 1973)

Generalized extreme value (GEV)
(McFadden, 1978)

Paired combinational 
logit (PCL) (Chu, 1981)

Cross-nested logit 
(CNL) (Vovsha, 1997)

Generalized nested logit (GNL), recursive nested 
logit extreme value model (RNEV), network-GEV
(Wen & Koppelman, 2001; Daly, 2001; Bierlaire, 2002)

Error component logit (ECL); Mixed 
logit (MXL); Kernel logit (KL); 

Heteroscedastic logit (HL)
(Boyd and Mellman, 1980; Cardell and 
Dunbar, 1980; McFadden, 1989; Bhat, 

1995; See Train (2009) for details)

Normal to Gumbel

Generalization

Generalization

Generalization

Special case

Heteroscedastic/mixed distributions

Derived  from  McFaddenʼ’s  G  function or  “choice  
probability  generating  functions”  (Fosgerau et al., 2013)

Generalization

Multinomial weibit (MNW)
(Castillo, et al., 2008)

Gumbel 
to Weibull q-generalized logit

(Nakayama, 2013)

Variance 
stabilization

(Li, 2011)

Generalized G function
(Mattsson et al., 2014)

Generalization

Derived from the generalized G function

Weibull to GEV (not MEV)

Models without specifying error distributions

Closed-form models
Open-form models



Closed-form 
discrete choice models



G FUNCTION & SOME EXAMPLES
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McFaddenʼ’s  G  function
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The properties that the 𝐺 function must exhibit
① 𝐺 𝑦௜ଵ, 𝑦௜ଶ, … , 𝑦௜௃೔ ≥ 0

② 𝐺 is homogeneous of degree 𝑚：𝐺 𝛼𝑦௜ଵ, … , 𝛼𝑦௜௃೔ = 𝛼௠𝐺 𝑦௜ଵ, … , 𝑦௜௃೔

③ lim
௬೔ೕ→ஶ

𝐺 𝑦௜ଵ, 𝑦௜ଶ, … , 𝑦௜௃೔ = ∞ for any 𝑗

④ The cross partial derivatives of 𝐺 satisfy:

−1 ௞ ȉ
డೖீ ௬೔భ,௬೔మ,…,௬೔಻೔
డ௬೔భడ௬೔మ⋯డ௬೔ೖ

≥ 0

When all conditions are satisfied, the choice probability can be defined as:

𝑃௜௝ =
𝑒௏೔ೕ ȉ 𝐺௝ 𝑒௏೔భ, 𝑒௏೔మ, … , 𝑒௏೔಻೔

𝐺 𝑒௏೔భ, 𝑒௏೔మ, … , 𝑒௏೔಻೔

𝐹(𝜖௜ଵ, … , 𝜖௜௃) = exp{−𝐺(𝑒ିఢ೔భ, … , 𝑒ିఢ೔಻)}Assumption:

(where, 𝐺௝ = 𝜕𝐺/𝜕𝑌௜௝)

(McFadden, 1978)



Derivation of G function
Suppose 𝑢௜௝ = 𝑉௜௝ + 𝜖௜௝, where (𝜖௜ଵ, … , 𝜖௜௃) is distributed 𝐹 defined as:

𝐹(𝜖௜ଵ, … , 𝜖௜௃) = exp{−𝐺(𝑒ିఢ೔భ, … , 𝑒ିఢ೔಻)}

Then, the probability of the first alternative 𝑃௜ଵ satisfies:

𝑃௜ଵ = න
ఢୀିஶ

ାஶ

𝐹ଵ 𝜖, 𝑉௜ଵ − 𝑉௜ଶ + 𝜖, … , 𝑉௜ଵ − 𝑉௜௃ + 𝜖 𝑑𝜖

= න
ఢୀିஶ

ାஶ
𝑒ିఢ𝐺ଵ 𝑒ିఢ, 𝑒ିఢି௏೔భା௏೔మ, … , 𝑒ିఢି௏೔భା௏೔಻

× exp −𝐺 𝑒ିఢ, 𝑒ିఢି௏೔భା௏೔మ, … , 𝑒ିఢ೔భି௏೔భା௏೔಻
𝑑𝜖

= න
ఢୀିஶ

ାஶ
𝑒ିఢ𝐺ଵ 𝑒௏೔భ, 𝑒௏೔మ, … , 𝑒௏೔಻

× exp −𝑒ିఢ𝑒ି௏೔భ𝐺 𝑒௏೔భ, 𝑒௏೔మ, … , 𝑒௏೔಻
𝑑𝜖

=
𝑒௏೔భ𝐺ଵ 𝑒௏೔భ, 𝑒௏೔మ, … , 𝑒௏೔಻

𝐺 𝑒௏೔భ, 𝑒௏೔మ, … , 𝑒௏೔಻
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multivariate extreme value (MEV) distribution (NOT GEV)

Uses the linear homogeneity



Some examples
G function Choice probability

Logit
𝐺 = Σ௝ୀଵ

௃ 𝑦௜௝ 𝑃௜௝ =
exp 𝑉௜௝

Σ௝ᇱୀଵ
௃ exp 𝑉௜௝ᇱ

Nested logit
𝐺 = Σ௟ୀଵ௄ Σ௝∈஻೗𝑦௜௝

ଵ/ఒ೗
ఒ೗ 𝑃௜௝ =

𝑒௏೔ೕ/ఒೖ Σ௝∈஻ೖ𝑒
௏೔ೕ/ఒ೗ ఒೖିଵ

Σ௟ୀଵ௄ Σ௝∈஻ೖ𝑒
௏೔ೕ/ఒ೗ ఒ೗

Paired
combinational 
logit 𝐺 = Σ௞ୀଵ

௃ିଵΣ௟ୀ௞ାଵ
௃ 𝑦௜௞

ଵ/ఒೖ೗ + 𝑦௜௟
ଵ/ఒೖ೗

ఒೖ೗
𝑃௜௝ =

∑௠ஷ௝ 𝑒
௏೔ೕ
ఒೕ೘ 𝑒

௏೔ೕ
ఒೕ೘ + 𝑒

௏೔೘
ఒೕ೘

ఒೕ೘ିଵ

Σ௞ୀଵ
௃ିଵΣ௟ୀ௞ାଵ

௃ 𝑒
௏೔ೖ
ఒೖ೗ + 𝑒

௏೔೗
ఒೖ೗

ఒೖ೗

Generalized 
nested logit

𝐺 = Σ௞ୀଵ௄ Σ௝∈஻ೖ 𝛼௝௞𝑦௜௝
ଵ/ఒೖ ఒೖ 𝑃௜௝ =

Σ௞ 𝛼௝௞𝑒௏೔ೕ
ଵ
ఒೖ Σ௠∈஻ೖ 𝛼௠௞𝑒௏೔೘

ଵ
ఒೖ

ఒೖିଵ

Σ௟ୀଵ௄ Σ௠∈஻ೖ 𝛼௠௟𝑒௏೔೘
ଵ
ఒ೗

ఒ೗
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* 𝑦௜௝ ≔ exp 𝑉௜௝



Strengths and limitations
• Strengths

– A closed-form discrete choice model without 
assuming specific error distributions

– This allow us to derive a number of 
behaviorally understandable models
• Nested logit, Cross-nested logit, Paired combinational 

logit, etc.

• Limitations
– Only for additive utility, i.e., 𝑢௜௝ = 𝑉௜௝ + 𝜖௜௝

• 𝑉௜௝ and 𝜖௜௝ can be dependent each other
– Only for GEV MEV family

• Some other distributions can be useful in some context
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VARIANCE STABILIZATION &
SOME EXAMPLES
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Variance stabilization
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Two fundamental ideas:
1. A stable class of distributions w.r.t. the minimum operation

2. Variance-stabilizing transformations

Suppose the random disutility 𝑋௜௝ from the following 𝐶𝐷𝐹:
𝐹௜௝ 𝑥 = Pr 𝑋௜௝ < 𝑥 = 1 − [1 − 𝐹(𝑥)]ఈ೔ೕ

The minimum random disutility 𝑋௜௝ under the assumption of 
independence can be written as:

Pr min
௝∈஼೔

𝑋௜௝ < 𝑥 = 1 − Π௝∈஼೔ Pr 1 − 𝐹௜௝ 𝑥 = 1 − [1 − 𝐹(𝑥)]ఈ೔బ

Unspecified base 
distribution function

Consider the transformation of 𝐹௜௝ 𝑥 to the Gumbel distribution:

𝐹௜௝ 𝑥 = Pr 𝑋௜௝ < 𝑥 = 1 − 1 − 𝐹 𝑥 ఈ೔ೕ

A transformation function ℎ 𝑥 which stabilize the variance 
can be defined as:

ℎ 𝑥 = 𝜃ିଵlog{− log 1 − 𝐹 𝑥 }
The transformed random variable 𝑍௜௝ = ℎ 𝑋௜௝ follows:

𝐺 𝑧; 𝜃, 𝛼௜௝ = 1 − exp[−𝛼௜௝ exp 𝜃𝑧 ] [Gumbel]

(Li, 2011)

𝛼௜଴ = Σ௝∈஼೔𝛼௜௝



Derivation of choice probability
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(Li, 2011)

𝑃௜௝ = Pr{𝑋௜௝ ≤ min
௝ᇲ ஷ௝

𝑋௜௝ᇲ} = Pr{𝑍௜௝ ≤ min
௝ᇲ ஷ௝

𝑍௜௝ᇲ}

= ∫௭∈ஐ೔
𝑄௜ଵ 𝑧 ⋯𝑄௜௝ିଵ 𝑧 𝑓௜௝ 𝑧 𝑄௜௝ାଵ 𝑧 ⋯𝑄௜௃ 𝑧 𝑑𝑧

𝑍௜௝ = ℎ 𝑋௜௝ where ℎ ȉ is a monotonically 
increasing transformation

where, 
𝑄௜௝ 𝑧 = 1 − 𝐹௜௝ 𝑧 = exp −𝛼௜௝exp𝜃𝑧 , and
𝑓௜௝ 𝑧 = 𝜃𝛼௜௝ exp −𝛼௜௝ exp 𝜃𝑧 exp 𝜃𝑧

𝑃௜௝ = 𝜃𝛼௜௝ න
௭∈ஐ೔

exp −𝛼௜଴ exp 𝜃𝑧 exp 𝜃𝑧 𝑑𝑧

=
ఈ೔ೕ
ఈ೔బ

=
ఈ೔ೕ

ஊೕᇲ∈಴೔ఈ೔ೕᇲ
=

ு ௏೔ೕ
ஊೕᇲ∈಴೔ு ௏೔ೕᇲ

Since ℎ 𝑋௜௝ follows the Gumbel where the CDF is 1 − exp[−𝛼௜௝ exp 𝜃𝑥 ], 
𝐸 ℎ 𝑋௜௝ = −{log 𝛼௜௝ + 𝛾}/𝜃. Thus, 𝛼௜௝ = exp{−𝛾 − 𝜃𝐸 ℎ 𝑋௜௝ }

How to specify 𝛼௜௝?



Some examples
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• The models with the distributions of: Exponential, Parato, 
Type II generalized logistic, Gompertz, Rayleigh, Weibull, and 
Gumbel (some types of distributions need approximations)

(Li, 2011)



Further generalization
“Scale parameter is absorbed into 𝐻 ȉ so it is not identifiable. 
Hence, extending the multinomial logit model by allowing an 
unspecified functional form 𝐻 ȉ can address both the issue of 
non-linearity in the mean function and the issue of variance 
stabilization” (p. 465)
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(Li, 2011)

𝐻 𝑉௜௝
Σ௝ᇱ∈஼೔𝐻 𝑉௜௝ᇱ

=
exp 𝑆 𝛃𝐱𝐢𝐣

Σ௝ᇱ∈஼೔ exp 𝑆 𝛃𝐱𝐢𝐣

where 𝑆 ȉ is a sensitivity function

Since 𝐻 𝑉௜௝ [= 𝛼௜௝] should be non-negative, it is natural to assume:

Semi-parametric approach (such as P-splines approach) can 
be used as an approximation of any base distribution 𝐹



Distribution/linearity: an example
(1) Differences in distribution assumption
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 ijijij Vgu ,

Gumbel distribution Weibull distribution

 

















k ik

ij

ij

V

V
p




1exp

1exp








k ik

ij
ij

V

V
p





1

1

𝑢௜௝: Random utility
𝑉௜௝: Systematic utility (linear in parameters)
εij:   Error term

Logit model Weibit (or multiplicative) model

𝑒௜௝ is 
dependent 
on 𝑉௜௝

𝑒௜௝ is 
independen
t from 𝑉௜௝



Distribution/linearity: an example
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  ijijij Vfu 

Linear systematic utility Logarithm systematic utility

εij:   Gumbel distribution

vij

-uij

vij

-uij

(2) Difference in systematic utility

Logit model Weibit (or multiplicative) model

 

















k ik

ij

ij

V

V
p




1exp

1exp








k ik

ij
ij

V

V
p





1

1
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Logit 
model

Distribution/linearity: an example

  ijijij Vfgu ,

Gumbel  Weibull

Linear  Logarithm

Weibit
model

Randam utility distribution:

Systematic utility function:

Castillo et al. (2008)

(See Castillo et al. (2008) for elegant explanations)



Strengths and limitations
• Strengths

– Not limited to the MEV distribution. A larger 
class of distributions can be assumed in the 
development of closed-form choice models

– A semi-parametric discrete choice model can 
approximate any base distribution 𝐹

• Limitations
– Only under the assumption of independence

• Unobserved terms need to be independent across 
alternatives

– Behavioral foundations of some types of 
distributions has not been well established
• Increase the difficulty to use the models in practice
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GENERALIZED G FUNCTION &
SOME EXAMPLES
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Generalized G (A) function
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The properties that the 𝐴 function must exhibit
① 𝐴 𝑦௜ଵ, 𝑦௜ଶ, … , 𝑦௜௃೔ ≥ 0

② 𝐴 is homogeneous of degree one: 𝐴 𝛼𝑦௜ଵ, … , 𝛼𝑦௜௃೔ = 𝛼𝐴 𝑦௜ଵ, … , 𝑦௜௃೔

③ lim
௬೔ೕ→ିஶ

𝐴 𝑦௜ଵ, 𝑦௜ଶ, … , 𝑦௜௃೔ = ∞

④The cross partial derivatives of 𝐴 satisfy:

−1 ௞ ȉ
డೖ஺ ௬೔భ,௬೔మ,…,௬೔಻೔
డ௬೔భడ௬೔మ⋯డ௬೔ೖ

≥ 0

𝑃௜௝ =
𝑤௜௝ ȉ 𝐴௝ 𝑤௜ଵ, 𝑤௜ଶ, … , 𝑤௜௃

𝐴 𝑤௜ଵ, 𝑤௜ଶ, … , 𝑤௜௃

𝐹(𝑥௜ଵ, … , 𝑥௜௃) = exp{−𝐴(−𝑤௜ଵln[𝛹 𝑥௜ଵ ], … , −𝑤௜௃ln[𝛹 𝑥௜௃ ])}Assumption:

When 𝑤௝ = 𝑒௏೔ೕ and 𝛹 𝑥௝ ~𝑖. 𝑖. 𝑑. 𝐺𝑢𝑚𝑏𝑒𝑙, 𝐴 function  becomes  McFaddenʼ’s  𝐺 function

(Mattsson et al., 2014)

When all conditions are satisfied, the choice probability can be defined as:

(where, 𝐴௝ = 𝜕𝐴/𝜕𝑤௜௝)



Derivation of A function
Suppose 𝑢௜௝ = 𝑓 𝑤௜௝, 𝑥௜௝ , where (𝑥௜ଵ, … , 𝑥௜௃) is distributed 𝐹 defined as:

𝐹(𝑥௜ଵ, … , 𝑥௜௃) = exp{−𝐴 −𝑤௜ଵ ln 𝛹 𝑥௜ଵ , … , −𝑤௜௃ ln 𝛹 𝑥௜௃ }

Then, the probability of the first alternative 𝑃௜ଵ satisfies:

𝑃௜ଵ = න
௫∈ஐ೔

𝐹ଵ 𝑥, 𝑥, … , 𝑥 𝑑𝑥

= න
௫∈ஐ೔

𝑒ି஺ ି௪೔భ ୪୬ అ ௫೔భ ,…,ି௪೔಻ ୪୬ అ ௫೔಻ ×

𝐴ଵ −𝑤௜ଵ ln 𝛹 𝑥௜ଵ , … , −𝑤௜௃ ln 𝛹 𝑥௜௃ ȉ 𝑤௜ଵ ȉ
𝜓 𝑥
𝛹 𝑥

𝑑𝑥

= 𝑤௜ଵ ȉ
𝐴ଵ 𝑤
𝐴 𝑤 න

௫∈ஐ೔

𝐴 𝑤 𝛹 𝑥 ஺ ௪ ିଵ𝜓 𝑥 𝑑𝑥

= 𝑤௜ଵ ȉ
𝐴ଵ 𝑤
𝐴 𝑤
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Uses the linear homogeneity
=density function of 𝐹

(Mattsson et al., 2014)

Assuming the statistical independence, 
𝑃௜ଵ =

௪೔భ
ஊೕ∈಴೔௪೔ೕ

which  is  equivalent  to  Liʼ’s  (2011)  model



Some examples [1/2]
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(Mattsson et al., 2014)

G function Choice probability
Under the assumption of independence
Logit
(Gumbel)

𝐴: summation, 𝑤௜௝ = 𝑒ఉ௏೔ೕ,
𝛹 𝑥௜௝ ~𝐺𝑢𝑚𝑏𝑒𝑙(𝛽, 0)

𝑃௜௝ =
exp 𝑉௜௝

Σ௝ᇱୀଵ
௃ exp 𝑉௜௝ᇱ

Weibit-type
(Frechet) 𝐴: summation, 𝑤௜௝ = 𝑉௜௝ఉ,

𝛹 𝑥௜௝ ~𝐹𝑟𝑒𝑐ℎ𝑒𝑡(𝛽, 1)
𝑃௜௝ =

𝑉௜௝
ఉ

Σ௝ᇱୀଵ
௃ 𝑉௜௝ᇱ

ఉ

Weibit
(Weibull) 𝐴: summation, 𝑤௜௝ = 𝑉௜௝ିఉ,

𝛹 𝑥௜௝ ~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛽, 1)
𝑃௜௝ =

𝑉௜௝
ିఉ

Σ௝ᇱୀଵ
௃ 𝑉௜௝ᇱ

ିఉ

Under the statistical dependence

Nested logit, Paired combinational logit, Cross-nested logit, etc. (Same as the models 
derived from G function), AND some other models (see the next page)



Some examples [2/2]
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(Mattsson et al., 2014)

An example of A function under the statistical dependence

At this moment, the behavioral foundations 
have not been well established



Strengths and limitations
• Strengths

– Extend  McFaddenʼ’s  G  function
• From MEV to GEV (but not fully GEV)

– The model can deal with the statistical 
dependence among alternatives
• G-function-based GEV models are the special cases

• Limitations
– Behavioral foundations of some types of 

distributions has not been well established
• Increase the difficulty to use the models in practice
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Summary of closed-form models
• The new types of closed-form models can 

still be developed
• The biggest remaining problem may be the 

lack of behavioral foundation
– The task of behavioral modelers
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