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Introduction

« This lecture introduces advanced discrete
choice models, including
— advanced closed-form models, and
— advanced open-form models

« Understanding such advanced models are
important not only for utilizing advanced
models, but also for understanding the
limitations of conventional models

— Advanced models are often costly
(computational cost, etc.), but need to be
understood even when the conventional models
are just applied



Genealogy of discrete choice models

[based on Hato (2002)]

Multinomial Probit (MNP)

(Thurstone, I1927)

Normal to Gumbel

v
Multinomial logit (MNL)
(Luce, 1959)

Generalization

Nested logit (NL)
(Ben-Akiva, 1973)

Generalization

Generalization

[

Open-form models
Closed-form models

Heteroscedastic/mixed distributions

Error component logit (ECL); Mixed
logit (MXL); Kernel logit (KL);
Heteroscedastic logit (HL)
(Boyd and Mellman, 1980; Cardell and
Dunbar, 1980; McFadden, 1989; Bhat,
1995; See Train (2009) for details)

Generalized extreme value (GEV)

McFadden, 1978

: Gumbel
Speciallcase

v v

Paired combinational Cross-nested logit
logit (PCL) (Chu 1981) (CNL) (Vovlsha 1997)

Generalization

v
Generalized nested logit (GNL), recursive nested

logit extreme value model (RNEV), network-GEV
(Wen & Koppelman, 2001; Daly, 2001; Bierlaire, 2002)

Derived from McFadden’s G function or “choice
probability generating functions” (Fosgerau et al., 2013)

to Weibull Multinomial weibit (MNW)
(Castillo, et al.,

Generalized G function
(Mattsson et al.,

| Weibull to GEl (not MEV) |

g-generalized logit
(Nakayama, 2013)

!

Variance

2008)

Generalizatign

stabilization
(Li, 2011)

2014)

Derived from the generalized G function

Models without specifying error distributions
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Closed-form
discrete choice models



G FUNCTION & SOME EXAMPLES



(McFadden, 1978)

McFadden’s G function

The properties that the ¢ function must exhibit

@ G(yilrinr ---,yi,i) >0

@ G is homogeneous of degree m : G(ay;y, ..., ayij,) = a™G(¥i1, -, Vi)

® lim G(¥i1, Yz, ...,yl-]l.) = oo for any j

Yij—®©

@ The cross partial derivatives of G satisfy:

(_1)k . akG(yilyyiz,.._,yi]i)

>0
0Yi10Yi2-"0Yik

When all conditions are satisfied, the choice probability can be defined as:

N R Vi
eVij . Gj(eVll,eVlz, ., @ ”1)

P;j = G(eVil,eViZ, ---;evi]i)

(Where, G] — OG/OYU)

Assumption: | F(€jq, ..., €y) = exp{—G(e™ i1, ...,e” )}




Derivation of G function

Suppose u;; = V;; + €;5, where (e;4, ..., €;;) is distributed F defined as:

F(€i1, ..., €5) = exp{—G(e™ €1, ...,e"“U)} | multivariate extreme value (MEV) distribution (NOT GEV)

Then, the probability of the first alternative P;; satisfies:

+ 00
Py = J Fl(f» Vii=Via+e€..,Vin =V + E)de
€=—00
+oo
e—eGl (8_6, e—e—Vi1+Vi2’ . e—e—Vi1+Vi]) y
= €
X eXp{_G(e_e, e_e_Vl'1+Vl'2’ ) e—eil—Vi1+Vi])}
€E=—00
too Uses the linear homogeneity
- j e Gy (e"1,e"2, ..., e"V) de
X exp{—e e VirG(eVnn, ez, ..., ")}
€=—00

eVi1(;1 (eVir,eViz, ., eVi])

G(eVir,eViz, ... eVi)




Some examples
| Gtmaion | Choleprobanily

Logit . 2] b _ exp(Vij)
1yU i J’ 1exp( U’)

| A1
Nested logit ) i eVij/)lk(ZjEBkeVl]/)ll) .
G = Z{<=1 (ZJEBlyll/ l) Pl] - Vii/ad AL
] Zf:l(szBke ij/ l)
Palrebc'lnational 4] ( Vij Vim)ljm_l
golnnlel cetim \elim 4 oAjm
logit G = Z] 121 ( 1Ak 1//1kl)/1kl p.. = L) € eimte
= 1=k+1 \Yik Yi ij Ve a
D (eﬂu +e'1kl)
Generalized ) \ g
nested logit A S (ajxe’i) 2 (ZmEBk(amkevim)ak)
G = 2311<<=1 (ZjEBk(ajkYij) ) Pij = N

2ty (ZmEBk (amlevim)’l_l)

*yij = exp(Vi;)



Strengths and limitations

- Strengths

— A closed-form discrete choice model without
assuming specific error distributions

— This allow us to derive a number of
behaviorally understandable models

» Nested logit, Cross-nested logit, Paired combinational
logit, etc.

- Limitations
— Only for additive Utility, i.e., ul-j — Vl] + Eij
- Vi and g;; can be dependent each other

— Only for 6 MEV family

« Some other distributions can be useful in some context

10



VARIANCE STABILIZATION &
SOME EXAMPLES
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(Li, 2011)

Variance stabilization

Two fundamental ideas:

1. A stable class of distributions w.r.t. the minimum operation

Suppose the random disutility X;; from the following CDF:
Fij(x) = PI‘{XU < x} =1— [1 _ F(x)]a’ij UnSpeleled base

-, distribution function
The minimum random disutility X;; under the assumption of

independence can be written as:
Pr E%icri‘xif <x}= 1 — e, Pr{1 — Fij(x)} =1—-[1—-F(x)]%o ~,
®io = Ljec,Aij
2. Variance-stabilizing transformations
Consider the transformation of Fjj(x) to the Gumbel distribution:

Fij(x) = Pr{Xy; <x}=1-[1-F(x)]%

A transformation function h(x) which stabilize the variance
can be defined as:

h(x) = 6 tlog{—log[1 — F(x)]}
The transformed random variable Z;; = h(X;;) follows:

G(z6,a;;) = 1 — exp[—a;; exp(6z)] [Gumbel] 12



(Li, 2011)

Derivation of choice probability

Zi; = h(X;;) where h(-) is a monotonically
r\ increasing transformation
i< ]rr(m]l)X 1} =Pr{Z;; < mln ZU '}

P, = Pr{X,

= J,eq, Qin (z) - Qij—1(D)fij(2)Qij+1(2) -+ Qi (2)dz

QU(Z) =1-F;j(z) = exp[—aijexp 0z|, and
fij(z) = Oay; exp[—aij exp(@z)] exp(62)

____________________________________________________________________________________

P;j = Haijj exp[—a;, exp(6z)] exp(0z) dz
Z€();
Qjj _ H(Vl'j)

@io  Zjrec;Xijr ZjleCl-H(Vijl)

How to specify a;;?
Since h(X;;) follows the Gumbel where the CDF is 1 — exp[—a;; exp(6x)],
E|h(X;;)] = —(log(a;;) +v}/6. Thus, a;; = exp{—y — 6E[h(X;;)]}




Some examples

(Li, 2011)

« The models with the distributions of: Exponential, Parato,
Type II generalized logistic, Gompertz, Rayleigh, Weibull, and
Gumbel (some types of distributions need approximations)

Table 1

Special cases of the distribution family (1).

Underlying distribution Fy,(t) Base distribution F(t) Expectation Vj, Variance o2,

Exponential 1 — exp{—uint} 1 —exp{—t} 35]1 3512
Pareto 1—t%(t=1) 1" Sin(Otin — 1) Stinf [(2in — 1) (%tin — 2)]
Type 11 generalized logistic 1—[1+exp(t)] ™ 1—1/[1 +exp(t)] Y1) — (o) Y1) = Y (i)
Gompertz 1 — exp{—aoy[exp(0t) — 1]} 1 — exp{—[exp(0t) — 1]}
Rayleigh 1 — exp{—ot*(2} 1 —exp{—*[2} [7(206)]'? (4 — 7)/(204n)

. } } _ / ) _ !
Weibull 1 —exp{—?ﬂmf!} 1 —exp{—{‘} xm].-gr(] _'_-1/”) sz.-g{r(-l _’_%) _ [r[] +]§)]2}
Gumbel 1 — exp{—oiexp(0t)} 1 — exp{—exp(01))} —{log(ain) + 7}/0 m?/(66°)

Table 2

The variance-stabilizing transformations, mean functions, and sensitivity functions for some distributions in family (1).

Variance-stabilizing transformation h(t)

Mean function H(t)

Sensitivity function S(t)

Exponential

Pareto

Type 1l generalized logistic
Gompertz

Rayleigh

Weibull

Gumbel

0 og(1)

0 'log{log(t)}

0 og{log[1 + exp(1)]}
0 'log{exp(6t) — 1}

0 'og(t?)

log(t)

[

1
t/(t—1)
Y (1) — (D)

n/(2t%)
{(ra+1/o)ty
exp(—7y — 0t)

—log(1)
log(t) — log(t — 1)
log{y~'(W(1) — W(1))

—2log(t)
—0log(t)
—0t

LT



(Li, 2011)

Further generalization

“Scale parameter is absorbed into H(:) so it is not identifiable.
Hence, extending the multinomial logit model by allowing an
unspecified functional form H(:) can address both the issue of

non-linearity in the mean function and the issue of variance
stabilization” (p. 465)

Since H(V;;) [= a;;] should be non-negative, it is natural to assume:

H(V;) _ exp{S(Bxi;)}
ZiecHWVij)  Zjrec; exp{S(Bxi)}

where S(-) is a sensitivity function

Semi-parametric approach (such as P-splines approach) can
be used as an approximation of any base distribution F

15



Distribution/linearity: an example

(1) Differences in distribution assumption

u;;: Random utility
V;j+ Systematic utility (linear in parameters)
g+ Error term

R —"

— Gumbel distribution

PDF
0.35 [ gumbel(1, 4) /\ gumbel(1, 8)/\gumbel(l, I%f\\
0.30 |
025}
0.20
0.15}
0.10 |

0.05

Logit model

-1

15

generalized cost

pij:

1
Zk eXp(_ 9‘/ik

J

Weibull distribution

PDF

08t weibull(0, 1, 2)

0.6

weibull(0, 2. 2)
0.4}

N weibull(0, 3, 2)
02+t S~

— generalized cost

1 2 3 4 5

Weibit (or multiplicative) model
1

0
v,

1
> Vil

pij:

16




Distribution/linearity: an example

(2) Difference in systematic utility

&; Gumbel distribution

Linear systematic utility

Vij

-l/ll-jw

Logit model

-1

pij:

1
Zk eXp(_ 9‘/ik

J

<
Logarithm systematic utility

i

'ul:]'w

Weibit (or multiplicative) model
1

0
v,

1
> Vil

pij:




Distribution/linearity: an example

=l

Randam utility distribution:

Gumbel > Weibull
Castillo et al. (2008)
Logit Weibit

model o . model
Systematic utility function:

Linear - Logarithm

(See Castillo et al. (2008) for elegant explanations)
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Strengths and limitations

- Strengths

— Not limited to the MEV distribution. A larger
class of distributions can be assumed in the
development of closed-form choice models

— A semi-parametric discrete choice model can
approximate any base distribution F

 Limitations

— Only under the assumption of independence

« Unobserved terms need to be independent across
alternatives

— Behavioral foundations of some types of
distributions has not been well established
« Increase the difficulty to use the models in practice

19



GENERALIZED G FUNCTION &
SOME EXAMPLES

20



(Mattsson et al., 2014)

Generalized G (A) function

The properties that the A function must exhibit

@ A(Yiv Yizs Vi) 2 0

@ A is homogeneous of degree one: A(ayiy, ..., ayi;,) = aA(Yi1, -, Vij,)

©), limooA(yil,yiz, ...,yl-]l,) = 00

Yij——

@The cross partial derivatives of A satisfy:

(_ 1)k . akA(J’il’Yizl---,yi]i)
0Yi10Yi2 0k

=0

When all conditions are satisfied, the choice probability can be defined as:

_ Wij y Aj(Wil’Wiz’ ...,Wi])

P.. =
¥ A(Wil,Wiz,...,Wi])

j (Where, A] = aA/aWU)

Assumption: F(xi1, .., xi5) = exp{—A(—w1In[¥ (x;1)], ..., —Wi]ln['P(xi])])}

When w; = "4 and ¥(x;)~i.i.d. Gumbel, A function becomes McFadden’s G function




(Mattsson et al., 2014)

Derivation of A function

Suppose u;; = f(w;;,x;;), where (x4, ..., x;;) is distributed F defined as:
F(xi1, .o xiy) = exp{—A(—wil In[¥(x;1)], ..., —wyy ln[‘z”(xi])])}

Then, the probability of the first alternative P;; satisfies:

Pil = j Fl(x,x, ,X)dx

X€EQ;

e_A(_Wil ln['lu(xil)]i"'i_wl'] ln[lp(xl])]) X

xejﬂi Al(_Wil In[¥(x;1)], ..., —Wiy ln[qj(xi])]) " Wi % d;
A;(w)
= Wit % uA(W) [qj(x)]'A(W)_ll/)(x).dx b/Uses the linear homogeneity
X€Ly =density function of F
_ .A1(W)
1 Aw) Assuming the statistical independence,

Wiq

P, = which is equivalent to Li's (2011) model

Zjec;Wij




(Mattsson et al., 2014)

Some examples [1/2]
| Gfunction | Choiceprobability

Under the assumption of independence

Logit A: summation, w;; = efVu, B — eXP(Vu)
(Gumbel) '{/(xij)~Gumbel(,8, 0) / 2o 1exp( u')
y\éﬂ?ﬁ:’épe A: summation, w;; = V;;*, p.. = VB
¥ (i) ~Frechet (8, 1) Yoz 1Vf,
EA\;\?él?tl)t ”) A: Summation, Wij = Vij_B/ p.. = Vl]—_ﬁ
u @ (i) ~Weibull(B, 1) St

Under the statistical dependence

Nested logit, Paired combinational logit, Cross-nested logit, etc. (Same as the models
derived from G function), AND some other models (see the next page)

23



(Mattsson et al., 2014)

Some examples [2/2]

An example of A function under the statistical dependence

Let m<n and suppose that X = (X;,..., Xn) has a cd.f. Feg" for some seed function ¥ < F, positive weights
w=(wq,..., wy ), and aggregation function A of the form

- 1/p i 1/t
A(y) (Zy:’) + ( ny) vy € R? (12)
i=1 i=m+1

for some p, T = 1. This is still an aggregation function that satisfies the alternating-signs condition, and F is a c.d.f. by
Lemma 2. When both p, 7 > 1, there is statistical dependence within the subset I} = {1..... m} of the first m random

variables, as well as within the remaining set I, ={m+1,..., n} of random variables. Rewrite A(y,,..., Vp) =
Ar(yVy.. .-, Ym) + A2 (Vi1 ¥,). This set-up arises naturally in travel demand, location choice, industrial organization and

international trade (in which case I; might be a travel mode, a geographical area, a category of goods, an industry or a coun-
try; and likewise for I,). We then have, for each k € I;:

Ar(wy, ..., Wy) ‘ wy (13)

Prlk € arg max Xi

At this moment, the behavioral foundations
have not been well established

24



Strengths and limitations

- Strengths
— Extend McFadden’s G function
« From MEV to GEV (but not fully GEV)

— The model can deal with the statistical
dependence among alternatives
« G-function-based GEV models are the special cases

 Limitations

— Behavioral foundations of some types of
distributions has not been well established
« Increase the difficulty to use the models in practice

25



Summary of closed-form models

« The new types of closed-form models can
still be developed

« The biggest remaining problem may be the
lack of behavioral foundation
— The task of behavioral modelers
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