14th Behavior Modeling in Transportation Networks, UT Sat. 26 September. Early bird session.

A context-dependent scheduling model considering measurement errors in pedestrian network

Yuki Oyama* and Eiji Hato * Ph.D. Candidate / The University of Tokyo oyama@bin.t.u-tokyo.ac.jp

Table of Contents

1.	Introduction :	Part 1
	 City Center Sojourn of pedestrians 	
2.	Behavior Model :	
	 Pedestrian dynamic scheduling model 	
	 Context-dependent energy 	
3.	Measurement Model :	
	 Probe Person data with GPS technologies 	Part 2
	 Detection of pedestrian activity paths 	
4.	Case study :	
	 Model Estimation and Results 	Part 3
5.	Conclusions	

Time use pattern in pedestrian network

Development around station

Urban renovations

Large scale buildings No. of visitors

Small scale projects
Frequency / Duration /...

How people spent their time in these districts?

Target | City Center Sojourn

• **City Center Sojourn** refers to pedestrian scheduling behavior in city centers, which includes a sequence of moving (travel) and staying (activity) decisions.

Target | Pedestrian scheduling

Activities can be generated (walking) context-dependently

- Spatial attributes (stumbling on an attractive shop,...)
- Activity history (finding next shop for goods she wants, ...)
- Social interaction (a friend says he wants to drop in a café,...) ...

Pattern is not alternative but result of dynamic scheduling process

e.g.; Habib (2011)

Activities (staying) do not always decided to conduct before travels (moving)

Review | Scheduling models

1. Markov chain

Lerman (1979), Borgers and Timmermans (1986)

$$p_t(i,j)$$

(but only at the time)

2. Time allocation

Bhat et al. (2005), Fukuyama and Hato (2013)

$$\sum_{k=1}^{K} t_k = T$$

3. Utility maximization

Bowman and Ben-Akiva (2001), Recker (1995)

 $\max U$

(pre-trip)

○ ordered	× random ordered	ordered ordered		
× separated	Δ semi-separated	○linked		
O context-dependent	× independent	× independent		

(pre-trip)

Model | Dynamic scheduling model

Activity = Time allocation behavior to a certain 'space'

- **Staying**: duration time choice in a certain 'node' $n \in S$

- Moving: duration time choice in a certain 'link' $l \in S$

Model | Dynamic scheduling model

Activity = Time allocation behavior to a certain 'space'

- Moving: duration time choice in a certain 'link' $l \in S$
- Staying: duration time choice in a certain 'node' $n \in S$

Dynamic scheduling model in space

1. Activity generation model

Continue or Finish activities?

*'Continue' means moving next space

*'Finish' means moving out of district

What this decision is based on?

2. Time allocation model

Duration time choice in the space

$$\max u_k(t_k)$$

Model | Activity generation model

Is it enough with only time constraints?

- **Non-mandatory tour** (shopping, eating, recreational, other activities are included).
- Sojourn time (cumulative duration) is continuously distributed.

 We cannot explain the sojourn time differences among tours by only time constraint.

We have to consider:

Psychological (personal) concept as resource

Model | Activity generation model

Psychological mechanisms in behavior modeling

- **Need** (Maslow, 1943; Arentze and Timmermans, 2004; Nijland et al., 2013)
- Satisfaction (Pattabhiraman et al., 2013)
- Satiation (MacAlister, 1982; Bhat et al., 2005)

'Energy': personal resource for engaging in activities.

- All of activities in a tour have 'energy' in common.
- Energy decreases by engaging activities, and can increase based on context.

Model | Activity generation model

Step1: Initialization

Remaining energy:

$$E^{(n+1)} = \overline{E}_{i,d} - E_c^{(n)} + E_g^{(n+1)}$$
 (1)

Energy consumption:

$$E_c^{(n)} = \sum_{k=1}^{n} e_c(t^{(k)}, x^{(k)})$$
 (2)

Energy gain (or loss):

$$E_g^{(n)} = \sum_{k=1}^{n} \sum_{i} \gamma_{ki} I_{ki} + \sum_{i} \delta_{nj} S_{nj}$$
 (3)

 I_{ni} : Activity history variables

 S_{nj} : Spatial attributes variables

Model | Pedestrian scheduling model

Activity generation model

$$E^{(n)} = \overline{E}_{i,d} - E_c^{(n-1)} + E_g^{(n)} + \varepsilon$$
 (1)'

 ε : random error term (i.i.d. gumbel distribution)

If energy is greater than zero, the sojourn will be continued, otherwise finished.

$$Pr(continue) = Pr(E^{(n)} > 0)$$

Time allocation model (Habib, 2011)

*k=1: next activity, k=2: composite activities

$$\max U(t_k) = \sum_{k=1}^{2} \frac{1}{\alpha_k} \exp(\psi_k z_k + \varepsilon'_k) (t_k^{\alpha_k} - 1)$$
 (4)

s.t.,
$$t_1 + t_2 = T$$
 (5)

 $lpha_{_k}$: satiation parameter (< 1) $z_{_k}$: vector of variables $\psi_{_k}$: vector of weights

 \mathcal{E}'_k : random error term (i.i.d. gumbel distribution)

Model | Pedestrian scheduling model

Joint probability: Habib(2011)*

 $Pr(continue \cap Time = t_k)$

$$= \left(\frac{1-\alpha_{1}}{t_{k}} + \frac{1-\alpha_{2}}{T-t_{k}}\right) \cdot \frac{1}{\sigma} \exp\left(\frac{-(V'_{2}-V'_{1})}{\sigma}\right) \cdot \left[1 + \exp\left(\frac{-(V'_{2}-V'_{1})}{\sigma}\right)\right]^{-2} \times \Phi\left(\frac{J_{d}(\varepsilon) - \rho J_{c}(\varepsilon'_{k})}{\sqrt{1-\rho^{2}}}\right)$$

where, $V'_{k} = \psi_{k} z_{k} + (\alpha_{k} - 1) \ln(t_{k})$ (6)

 $J(\varepsilon)$: the inverse of CDF of standard normal distribution (Lee, 1983)

MLE (Maximum Likelihood Estimates)

$$L = \prod_{i=1}^{I} \left[\prod_{k=1}^{n} \left(\Pr_{i}(continue \cap Time = t_{k}) \right)^{\delta_{ic}} \right]$$
 (7)

^{*}Khandker M. Nurul Habib (2011). A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling, Transportation, Vol.38, pp.123-151.

Part 2 : Data processing

1. Introduction:

City Center Sojourn of pedestrians

2. Modeling:

- Pedestrian dynamic scheduling model
- Context-dependent energy

3. Measurement Model:

- Probe Person data with GPS technologies

Part 2

- Detection of pedestrian activity paths

4. Case study:

Model Estimation and Results

5. Conclusions

Data | Probe Person survey

Methods:

GPS (automatic) $\hat{m} = (\hat{x}, \hat{t})$

- Latitude / Longitude (a coordinate)
- Timestamp (at the interval of $5\sim30 \text{ s}$)
- + Web diary $a = (x, t^-, t^+)$
 - Trip purpose
 - Transportation mode

+ personal information

Personal day-to-day data

Measurements:

Reported activity episodes:

$$\hat{m}_{1:J_i^d} = (\hat{m}_1, ..., \hat{m}_{j_i^d}, ..., \hat{m}_{J_i^d})$$

$$a_{1:R_i^d} = (a_1, ..., a_{r_i^d}, ..., a_{R_i^d})$$

where, i : an individual, d : a day

Data | Probe Person survey

Reported path (—):

$$\hat{m} = (\hat{x}, \hat{t})$$

$$a_r = (x, t^-, t^+)$$

- There can be dropped (nonreported) staying activity.
- Measurements have not connected with 'space' yet.
 (and it has measurement error)

We need to

- 1. Label measurements ('moving' or 'staying')
- 2. Connect measurements with 'space' (node / link)

Step1: Classification of moving or staying

$$tt_{k,k+1} = t_{k+1}^- - t_k^+$$
: Reported travel time

$$tt_{k,k+1}^{\min} = d(x_k, x_{k+1}) / v_w$$
 (8)

: Shortest path travel time

Centroid of
$$\hat{m}_{i:p}^{k,k+1}$$

$$g_{i:p} = \frac{1}{p - i + 1} \left(\sum_{j=i}^{p} \hat{x}_{jlat}, \sum_{j=i}^{p} \hat{x}_{jlon} \right)$$
 (9)

$$*T_{\min} = 180s, v_w = 1.4m/s, r = 50m$$

Step1: Classification of moving or staying

Next: Connect activities with 'space' (move - link / stay - node)

Step2: Estimation of activity space for 'stay' data

Step2-1: Candidate set generation

Universal set: $\mathcal{U}_N = \{n : n \in S\}$

Space frequency score from day-to-day data:

$$f_{ni} = \sum_{d} \sum_{k} \delta_{k,n}^{i,d}, \quad f_n = \sum_{i} \sum_{d} \sum_{k} \delta_{k,n}^{i,d}$$

$$\tag{10}$$

 $\delta_{k,n}^{i,d}$: 1 if individual *i* stay *n* for activity *k* on day *d*, otherwise 0.

Importance Sampling using MCMC method

Adoption rate of *i* :

$$r_i = P_i / P_j = \exp(V_{in}) / \exp(V_{jn}), \quad V_{in} = \sum_j \beta_{nj} X_{nj} + w_1 f_{ni} + w_2 f_n$$
(11)

Finally we get a subset: $C_{iN} \subset \mathcal{U}_N$

Step2: Estimation of activity space for 'stay' data

Step2-2: Probability calculation e.g.; Danalet et al. (2014)

Prior probability:
$$P_i(n) = \exp(V_{in}) / \sum_{m \in C_{iN}} \exp(V_{im})$$
 (12)

Measurement probability:

$$P(\hat{m}_{p:q} \mid n) = P(\hat{x}_{p:q} \mid x_n) = \prod_{j=p}^{q} P(\hat{x}_j \mid x_n)$$

$$P(\hat{x}_j \mid x_n) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(\hat{x}_j - x_n)^2}{2\sigma^2}\right)$$
(13)

* We assume that measurement error is only localization $\,\sigma\,$

Probability of space n for 'stay' measurement set $\hat{m}_{n:a}$:

$$P(n \mid \hat{m}_{p:q}) = a \cdot P(\hat{m}_{p:q} \mid n) \cdot P_i(n)$$
(14)

Detected activity path:

Step2: Estimation of 'stay' space

Step3: Estimation of 'move' space

$$\hat{m} = (\hat{x}, \hat{t}, 'move')$$

$$a = (l, t^-, t^+)$$

Activity sequence with space

$$a_{1:M_i^d} = (a_1, ..., a_{m_i^d}, ..., a_{M_i^d})$$

Part 3 : Case study in Matsuyama city

1. Introduction:

City Center Sojourn of pedestrians

2. Behavior Model:

- Pedestrian dynamic scheduling model
- Context-dependent energy

3. Measurement Model:

- Probe Person data with GPS technologies
- Detection of pedestrian activity paths

4. Case study:

Model Estimation and Results

Part 3

5. Conclusions

Case study | City center of Matsuyama

Matsuyama city:

Data

- Ehime prefecture, Shikoku region
- Population: 516,637
 (December 1, 2010)
- Area: 428.86 sq. km
- Density: 1,204.68/sq. km

Case study | City center of Matsuyama

City center of Matsuyama:

- 2 department stores / 2 malls
- Various retails and restaurants are located around the streets.

About 1.5 km square

Case study | PP survey in Matsuyama

Data collection:

Survey	Period	Weeks	No. of monitors	Data (trip)
CityCenterPP2007	2007/02/19~2007/03/22	4	84	7,810
PP survey 2007A	2007/10/29~2008/01/21	12	508	17,697
PP survey 2007B	2007/10/29~2008/01/21	12	205	14,706
Bike sharing PP	2009/02/21~2009/03/07	2	15	668
Elderly PP 2010	2010/11/18~2011/01/31	12	30	1.380
Total		42	842	42,261

-> 1582 sojourn tours (non-mandatory) were observed

Estimation Variables of Energy

Remaining energy

$$E^{(n+1)} = \overline{E}_{i,d} - E_c^{(n)} + E_g^{(n+1)}$$

Initial stock of energy

$$\overline{E}_{i,d} = \sum_k \alpha_k x_k$$

- Female dummy (sex)

- Car inflow dummy (mode)

- Dist. between Entry point and Main (Location of entry point)

Energy consumption
$$E_c^{(n)} = \sum_{k=1}^n e_c(t^{(k)}, x^{(k)})$$

By staying:
$$e_c^s = (\beta_{time}^s + \sum_k \beta_k^s x_k^s) \cdot t$$

By moving:
$$e_c^m = (\beta_{time}^m + \beta_{speed}^m s + \sum_k \beta_k^m x_k^m) \cdot t$$

- Shopping purpose dummy

- How many times

- Sidewalk width

- Shooing street dummy

Energy gain (or loss)

$$E_g^{(n)} = \sum_i \gamma_{ki} I_{ki} + \sum_j \delta_{nj} S_{nj}$$

- Cumulative number of activities
- Previous trip purpose
- Dist. from EP or Main facilities
- Shopping street dummy

Estimation | Results

	Variable	Parameter	t-value		Variable	Parameter	t-value
Q	Correlation	0.048	0.90				
α_{c}	Satiation Parameter of composite	0.594	12.98**				
α_{m}	Satiation Parameter of moving	-3.196	-93.23**				
$\alpha_{\rm s}$	Satiation Parameter of staying	-0.176	-8.92**				
	Discrete choice				Continuous choice (move)		
α_1	Constant	5.354	26.03 **	$eta_{ m mc}$	Constant	-1.054	-5.17 **
α_2	Female dummy	-0.170	-1.52	eta_{time1}	Elapsed time (min./10)	0.006	2.55 **
α_4	Log(EP-Main dist.(km) + 1)	0.164	11.07 **	eta_{time2}	Cumulative stay activities	-0.004	-0.16
α_5	Car inflow dummy	0.632	5.06**	$\beta_{\text{time}3}$	Cumulative move activities	-0.006	-1.13
β_1	Basic parameter of time (min.)	-0.004	-6.75 **	eta_{time4}	Link length (m)	0.024	21.56 **
β_2	A Number of trips	0.002	6.74**	β_{time5}	No. of lanes	0.104	2.98 **
β_3	Shopping dummy	-0.003	-2.60 **	$\beta_{\text{time}6}$	Sidewalk width (m)	-0.067	-2.49 **
eta_4	Basic parameter of time (min.)	-0.264	-7.15 **	eta_{time7}	Shopping street	0.665	2.99 **
β_5	Walking speed (m/s)	-0.063	-8.49**	β_{time8}	Street trees	-0.057	-0.56
β_6	Sidewalk width (m)	0.070	6.42**		Continuous choice (stay)		
β_7	Shopping street dummy	-0.240	-3.72**	$eta_{ m ms}$	Constant	2.368	10.89**
γ_1	Cumulative stay activities	-0.986	-17.65**	$eta_{\text{time}9}$	Elapsed time (min./10)	-0.004	-0.86
γ_1	Cumulative move activities	0.638	10.78 **	$eta_{\text{time}10}$	Cumulative stays	-0.175	-4.87**
γ_2	Cumulative shopping stays	0.246	3.67**	eta_{time11}	Cumulative moves	-0.042	-4.45 **
γ_4	Previous activity: eating	0.364	1.82	$eta_{\text{time}12}$	Public facilities	0.113	0.99
γ_5	Previous activity: Main	-1.957	-14.24**	$eta_{\text{time}13}$	Department store	-0.564	-4.78 **
γ_4	Dist. from EP	-0.040	-2.60 **	eta_{time14}	Shopping street	-0.606	-3.86**
γ_5	Dist. from Main	-0.230	-14.52**	$eta_{ ext{time}15}$	No. of retails	-0.029	-2.48 **
					Observations		7247
					Initial Likelihood	-	24949.15
					Final Likelihood	-	18855.90
					Rho square (adj.)		0.243

- To capture context-dependent activity generation and scheduling process in pedestrian behavior,
- we incorporated "energy" into the scheduling model and described a sequential time-allocation behavior to spaces.
- And using PP data, we detected activity paths with space.
- As a result, it was clarified that the energy consumption and gain process are dependent on some behavioral and spatial context variables.

Thank you for your attentions!! Questions?

Contact: oyama@bin.t.u-tokyo.ac.jp

or overline.dom@gmail.com