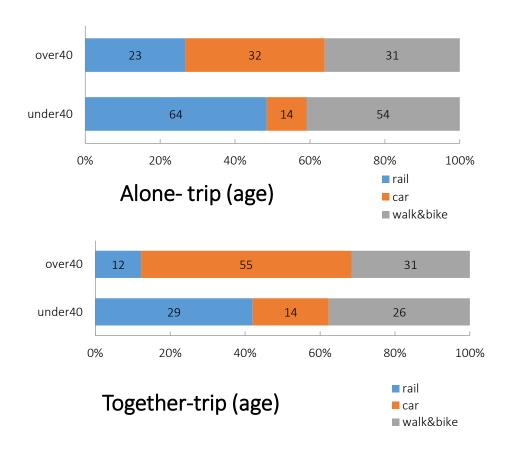
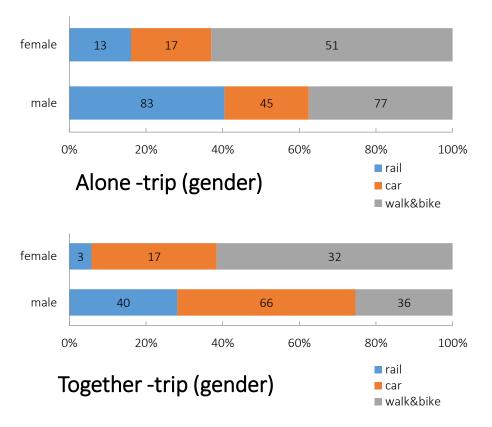
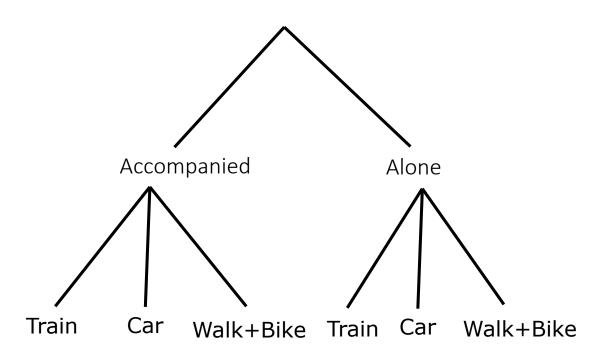

Transportation model of Trip Characteristic on Companionship

Urban Transportation Research Unit, Department of Urban Engineering
, The University of Tokyo

Team D


Hypothesis


Companionship has big effect on activity.



Basic analysis

Model of our Analysis

$$\begin{array}{lll} U_{trainalone} &= V_{01} + \varepsilon_{01} = d_{01}(timetrain) + d_{02}(fare) & + d_{03}(age) + b_{1} + \varepsilon_{01} \\ U_{caralone} &= V_{02} + \varepsilon_{02} = d_{01}(timecar) & + d_{03}(age) + b_{2} + \varepsilon_{02} \\ U_{walk+bicyclealone} &= V_{03} + \varepsilon_{03} = d_{01}(timewalk + timebike) / 2 + d_{03}(age) + b_{3} + \varepsilon_{03} \\ U_{trainalone} &= V_{11} + \varepsilon_{11} = d_{11}(timetrain) + d_{12}(fare) & + d_{13}(age) + b_{4} + \varepsilon_{11} \\ U_{caralone} &= V_{12} + \varepsilon_{12} = d_{11}(timecar) & + d_{13}(age) + b_{5} + \varepsilon_{12} \\ U_{walk+bicyclealone} &= V_{13} + \varepsilon_{13} = d_{11}(timewalk + timebike) / 2 + d_{13}(age) + b_{6} + \varepsilon_{13} \end{array}$$

$$P_{n}(i,c) = P_{n}(i)P_{n}(i \mid c)$$

$$P_{n}(i) = \frac{\exp(\lambda \bigwedge_{nc})}{\sum_{c=1}^{2} \exp(\lambda \bigwedge_{nc})}$$

$$P_{n}(i \mid c) = \frac{\delta_{nci} \exp(V_{ni} + V_{nci})}{\sum_{j=1}^{3} \delta_{ncj} \exp(V_{nj} + V_{ncj})}$$

$$\bigwedge_{nc} = \ln \sum_{i'}^{3} \exp(V_{ni'} + V_{nci'})$$

$$i \in j = \{1,2,3\}$$

$$\{\delta_{j} : \text{mode availability} \mid 1,0\}$$

	parameter	T value
constant (trainalone)	0.61	1.53
constant (caralone)	-1.07	-3.04**
<pre>constant(walk+bikealone)</pre>	0.82	2.30**
constant(trainaccompanied)	-0.16	-0.59
constant(caraccompanied)	-0.81	-4.54**
time	-0.80	-10.2**
time	-0.81	-9.69**
Age	-0.055	-0.0000186
Age	0.055	-0.0000186
Fare	0.11	0.50
Fare	-0.066	-0.24
	1.08	2.26**
The number of sample		481
first likelihood		-911.2176
last likelihood		-725.0952
		0.204
		0.191

6

Independent variable: choice of transportation means(train, car, walk or bike)
Dependent variable: 1. duration time 2. egress time 3. weekday or not 4. gender
Method of estimation: Multinomial Logit model

Calculation

$$\begin{split} U_{train} &= V_1 + \varepsilon_1 = d_1 (duration) + d_2 (egress) \\ U_{car} &= V_2 + \varepsilon_2 = d_1 (duration) \\ U_{walk \, or \, bike} &= V_3 + \varepsilon_3 = d_1 (duration) \\ &+ \varepsilon_3 \end{split} \\ + \left(\frac{1}{2} \left(\frac{1}{2$$

$$P_n(i) = \frac{\delta_{ni} \exp(\mu V_{ni})}{\sum_{i=1}^{3} \delta_{nj} \exp(\mu V_{nj})}$$

$$i \in j = \{1, 2, 3\}$$

$$\{\delta_j : \text{mode abailability } | 1, 0 \}$$

Independent variable: choice of transportation means(train, car, walk or bike) Dependent variable: 1. duration time 2. living area 3. age 4. gender 5. cost Method of estimation: Multinomial Logit model

	Parameters	t value	
Constant term for train	-9.41×10^{-1}	1.97	**
Constant term for car	-1.71	-2.24	**
Duration time(minutes)	-4.34×10^{-3}	1.77×10	-2
Egress time(minutes)	-1.60×10^{-1}	-3.13	**
Day(weekday=1, weekend=0)	-3.05×10^{-2}	3.68×10	-1
Gender(male=1, female=0)	1.98	3.05	**
Number of samples			
Initial likelihood		196	
Final likelihood		-160.27	
Coefficient of determination	-141.10		
Coefficient of determination(modified)		0.1	12
		0.0)8

Calculation result

Independent variable: choice of transportation means(train, car, walk or bike)

Dependent variable: duration time

Method of estimation: Multinomial Logit model

Calculation

$$\begin{split} U_{train} &= V_1 + \varepsilon_1 = d_1 (duration) / 100 + b_1 + \varepsilon_1 \\ U_{car} &= V_2 + \varepsilon_2 = d_1 (duration) / 100 + b_2 + \varepsilon_2 \\ U_{walk \, or \, bike} &= V_3 + \varepsilon_3 = d_1 (duration) / 200 \qquad + \varepsilon_3 \end{split}$$

$$P_{n}(i) = \frac{\delta_{ni} \exp(\mu V_{ni})}{\sum_{i=1}^{3} \delta_{nj} \exp(\mu V_{nj})}$$

$$i \in j = \{1, 2, 3\}$$

$$\{\delta_{j} : \text{mode abailability } | 1, 0 \}$$

Independent variable: choice of transportation means(train, car, walk or bike)

Dependent variable: duration time

Method of estimation : Multinomial Logit model

Calculation result of alone trip

	Parameters	t value	
Constant term for train	-2.08×10^{-1}	-1.01	
Constant term for car	-2.00	-9.42	**
Duration time(train:1/100minutes) Duration time(car:1/100minutes) Duration time(walk or bike:1/200minutes)	-8.27	-7.85	**
Number of samples		286	
Initial likelihood		-287.44	
Final likelihood		-174.15	
Coefficient of determination		0.39	
Coefficient of determination(modified)		0.38	

Independent variable: choice of transportation means(train, car, walk or bike)

Dependent variable: duration time

Method of estimation : Multinomial Logit model

Calculation result of accompanied trip

	Parameters	t value	
Constant term for train	-4.56×10^{-1}	-1.84	
Constant term for car	-9.08×10^{-1}	-4.26	**
Duration time(train:1/100minutes) Duration time(car:1/100minutes) Duration time(walk or bike:1/200minutes)	-5.86	-5.71	**
Number of samples		195	
Initial likelihood		-198.94	
Final likelihood		-151.86	
Coefficient of determination		0.27	
Coefficient of determination(modified)		0.22	

Independent variable: choice of transportation means(train, car, walk or bike) Dependent variable: 1. duration time 2. living area 3. age 4. gender 5. cost Method of estimation: Multinomial Logit model

Calculation

$$\begin{split} U_{train} &= V_1 + \varepsilon_1 = d_1(dur) + d_2(liv) \times 10 + d_3(age) + d_4(gen) \times 10 + d_5(\cos) + b_1 + \varepsilon_1 \\ U_{car} &= V_2 + \varepsilon_2 = d_1(dur) + d_2(liv) \times 10 + d_3(age) + d_4(gen) \times 10 + d_5(\cos) + b_2 + \varepsilon_2 \\ U_{worb} &= V_3 + \varepsilon_3 = d_1(dur) + d_2(liv) \times 10 + d_3(age) + d_4(gen) \times 10 \\ &+ \varepsilon_3 \end{split}$$

$$P_n(i) = \frac{\delta_{ni} \exp(\mu V_{ni})}{\sum_{j=1}^{3} \delta_{nj} \exp(\mu V_{nj})}$$

$$i \in j = \{1, 2, 3\}$$

$$\{\delta_j : \text{mode abailability } | 1, 0 \}$$

Independent variable: choice of transportation means(train, car, walk or bike) Dependent variable: 1. duration time 2. living area 3. age 4. gender 5. cost Method of estimation: Multinomial Logit model

	Parameters	t value	
Constant term for train	4.49×10^{-2}	1.81×10^{-1}	
Constant term for car	-1.09	-5.81 *	*
Duration time(minutes)	-6.86×10	−7.28 *	*
Living area(city=10, suburb=0)	5.51×10^{-11}	4.64×10^{-15}	5
age	-2.53×10^{-10}	-2.70×10^{-11}	
Gender(male=10, female=0)	3.93×10^{-11}	8.33×10^{-12}	
cost(yen)	-2.28×10^{-1}	-4.31×10^{-1}	
Number of samples		278	
Initial likelihood		-285.14	
Final likelihood		-208.97	
Coefficient of determination		0.27	
Coefficient of determination(modified)		0.24	

Calculation result of alone trip

Independent variable: choice of transportation means(train, car, walk or bike) Dependent variable: 1. duration time 2. living area 3. age 4. gender 5. cost Method of estimation: Multinomial Logit model

	Parameters	t value	
Constant term for train	1.18	1.61	**
Constant term for car	-8.62×10^{-1}	-2.08	**
Duration time(minutes)	5.51×10^{-2}	-3.90	**
Living area(city=10, suburb=0)	-4.23×10^{-12}	-1.78×10^{-1}) ⁻¹⁶
age	7.02×10^{-12}	2.96×10^{-16}	
Gender(male=10, female=0)	4.11×10^{-12}	1.73×10) ⁻¹⁶
cost(yen)	-5.11×10^{-3}	2.01	**
Number of samples		72	
Initial likelihood		-75.45	
Final likelihood	-55.37		
Coefficient of determination	0.27		
Coefficient of determination(modified)		0.1	7

Calculation result of accompanied trip

Discussion and Further Study

Restrictions of examining each trip

Our goal was to make people using **private mode alone** change to use **public transportation** or use mode **with companions**.

But it was difficult to realize what the difference between alone-trip and together-trip.

For the future, we have to consider;

relationship

■ How to work

Periodic activities(like lessons)

chain-trip

etc....

family-structure