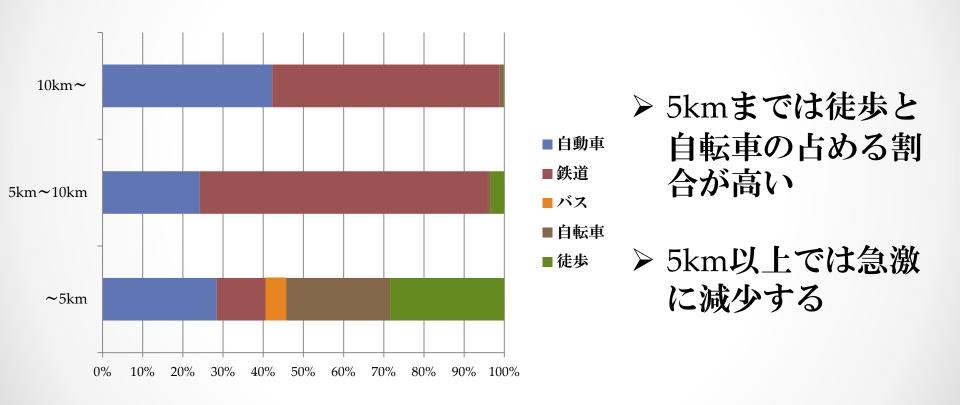

2015/09/26.27 行動モデル夏の学校 @東京大学

自転車交通に関する分析

広島大学Bチーム 倉橋、渡辺、大待、丸田

背景

横浜市は起伏が激しい



自転車に 適さない街!?

出典;第12回モデルの学校・

距離別にみた交通手段分担率

健康面や渋滞緩和、駅の混雑緩和の観点からも、自転車 利用の促進は重要

分析目的

- ・自転車交通の選択に及ぼす要因を分析
- ・健康まちづくりのための自転車利用促進に向けた政策提言

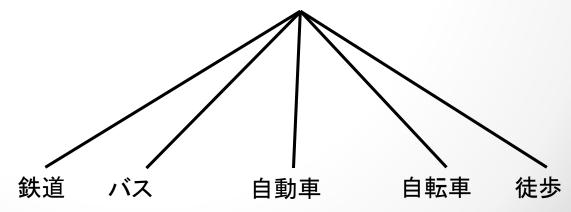
仮説

- ·移動距離、所要時間の抵抗が大きい
- ・標高、高低差の影響が大きい
- ·年齢や性別による違い
- ・アクセス・イグレス距離
- ・体力的な問題がある
- ·天侯に左右されやすい

提案

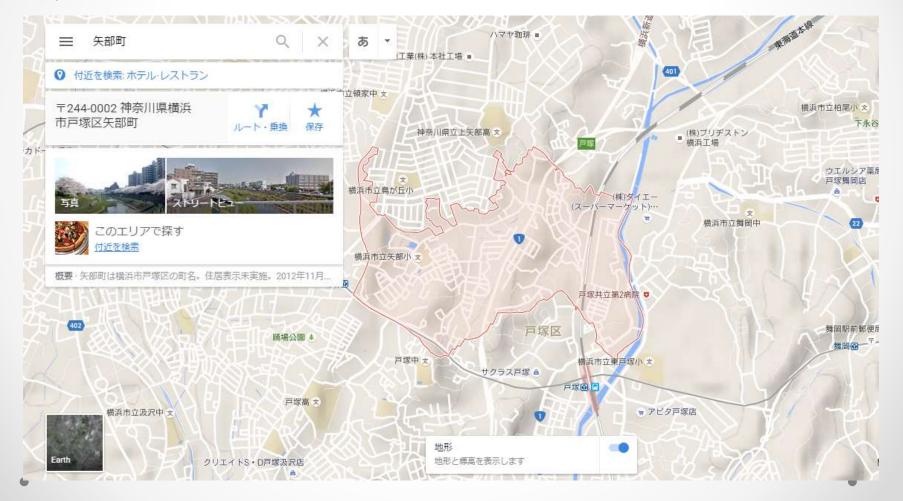
・電動アシスト自転車の導入

MNLモデル


効用関数

$$U_{train}$$
 = $V_1 + \varepsilon_1 = d_1$ *総所要時間 $train/100 + f_1$ *費用 $train/100 + b_1 + \varepsilon_1$
 U_{bus} = $V_2 + \varepsilon_2 = d_1$ *総所要時間 $bus/100 + f_1$ *費用 $bus/100 + b_2 + \varepsilon_2$
 U_{car} = $V_3 + \varepsilon_3 = d_1$ *所要時間 $car/100 + f_1$ *費用 $car/100 + b_3 + \varepsilon_3$
 $U_{bicycle}$ = $V_4 + \varepsilon_4 = d_1$ *所要時間 $bicycle/100 + w1$ *出勤ダミー+ $h1$ *坂ダミー+ $s1$ *女性ダミー+ $b_4 + \varepsilon_4$
 U_{walk} = $V_5 + \varepsilon_5 = d_1$ *所要時間 $walk/100 + \varepsilon_5$

$$P_n(i) = \frac{\delta_{ni} \exp(\mu V_{ni})}{\sum_{j=1}^{5} \delta_{nj} \exp(\mu V_{nj})}$$


 $i \in j = \{1, 2, 3, 4, 5\}$

 $\{\delta_i: 利用可能性 | 1,0\}$

標高について

- ・GISで頑張りましたが間に合いませんでした。
- ・簡易的に、下図の影のついてる部分を坂ダミーとしました。

推定結果

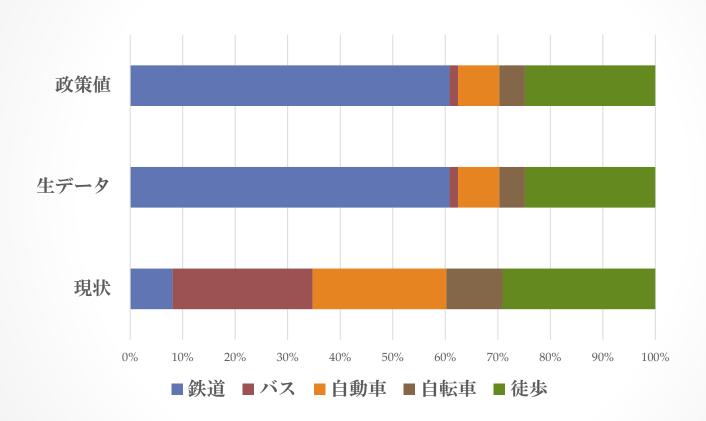
	0.17	. .
	パラメータ	t値
定数項(鉄道)	2.335	6.650***
定数項(バス)	0.916	2.473***
定数項(自動車)	-0.763	-4.888***
定数項(自転車)	-1.607	-5.546***
所要時間	-4.753	-7.154***
料金	-0.794	-5.507***
出勤ダミー(自転車)	0.714	1.317
若者ダミー(自転車)	1.387	4.237***
女性ダミー(自転車)	-0.289	-0.697
坂ダミー (自転車)	-1.987	-4.732***
初期尤度	-707.817	
最終尤度	-566.508	
尤度比	0.200	
修正済み尤度比	0.186	
サンプル数	495	

- ・所要時間が上がると効用が下がる
- ・若い年代に自転車は 好まれる傾向にある
- ・坂があると自転車の 効用が下がる

シミュレーション

電動アシスト自転車の導入

運転負荷の低減

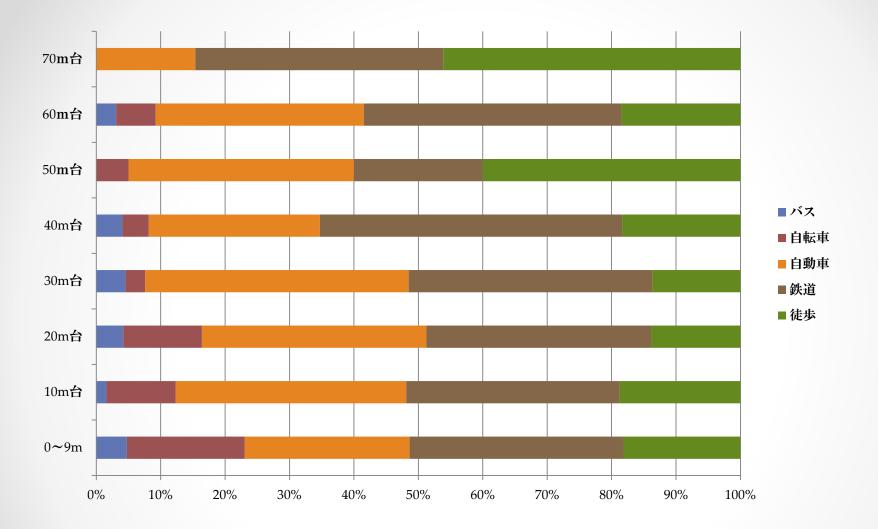


所要時間の短縮・坂の抵抗緩和

選択確率の増加?

シミュレーション

- ・自転車から電動アシスト自転車に転換
- ・自転車の庭訓速度10km/hを電動自転車で12km/hと仮定
- ・坂ダミーの値を半減(人力対アシストが1:1のため)


もし標高が入っていたら・・・

• 高低差の交通手段選択への影響が把握できる

・ 電動アシスト自転車を導入した場合の 高低差の影響を小さくしたシュミレーション

自転車の利用者がどのくらい増えるのか

・ 標高差 (発着差) が大きくなるほど自転車の利用 率は減少する

まとめと今後の課題

○まとめ

- ・ 坂は自転車の利用に影響するらしい
- ・ 電動アシスト自転車の導入効果は小さい

○今後の課題

- 経路、行きと帰りに関する情報を入れること
- ・ 標高、起伏を高い精度で求めること