Open-form
discrete choice models



Genealogy of DCMs (again)

Multinomial Probit (MNP)

Normal to Gumbel

Open-form models
(Thurstone, 1927) Closed-form models
|

v Heteroscedastic /mixed distributions

Multinomial logit (MNL)—S€neralization | |

(Luce, 1959) Error component logit (ECL); Mixed

Generalization

logit (MXL); Kernel logit (KL);
Heteroscedastic logit (HL)

Nested logit (NL) (Boyd and Mellman, 1980; Cardell and
(Ben-Akiva, 1973) Dunbar, 1980; McFadden, 1989; Bhat,
Generalization 1995; See Train (2009) for details)

Generalized extreme value (GEV)

Gumbel Weibull to GE

Special|case

V (not MEV) |

I l to Weibull Multinomial weibit (MNW) [ g-generalized logit
Paired combinational Cross-nested logit (Castillo, et al., 2008) (Nakayama, 2013)
logit (PCL) 1Chu, 1981) (CNL) (Vovsha, 1997) | Generalizatioh
Generalization | l l

Generalized G function
Mattsson et al., 2014

Generalized nested logit (GNL), recursive nested

logit extreme value model (RNEV), network-GEV
(Wen & Koppelman, 2001; Daly, 2001; Bierlaire, 2002)

Derived from McFadden’s G function or “choice
probability generating functions” (Fosgerau et al., 2013)

Variance

stabilization
Li, 2011

Derived from the generalized G function



Difference of GEV and Non-GEV

GEV model (Closed-form) Non-GEV model (Open-form)
Multinomial Logit (MNL) Multinomial Probit (MNP)
Pli)- exp(uV) P(i):Li:; IL%F% ' #(e)ds, - de,
ZeXp(/uVj) é(s)= 1_1 —eXp —15215’)
oz [ 2
e Luce(1959), McFadden(1974)  Thurstone(1927)
 Not consider correlation of « Consider correlation of choice
choice alternatives’ (lIA) alternates’ based on Variance-
« Easy and fast estimation Covariance matrix
« High operabillity « Hard and slow estimation
(easy evaluation for new additional choice (need calculation of multi-dimensional
alternative = benefit of IlA) interrelation depend on N of alternatives')

Non-GEV model has high power of expression,
however parameter estimation cost is high.



Structured Covariance MNP (1)

Multinomial Probit with Structured Covariance for Route Choice Behavior,
Transportation Research Part B, Vol.31, No.3, pp195-207, 1997.

Prof. Morichi Prof. Yai Prof. Iwakura

* Proposed new probit type railway route
choice model considering overlapping
problem. (1993, 1998)

« This model applied to practical demand
forecasting in real Tokyo network, and it
used for decision making of railway
policy toward 2015. (2000)

Transpn Res.-B, Vol. 31, No. 3. pp. 195-207. 1997

1997 Elsevier Science Lid
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Abstract—We propose another version of the multinomial probit model with a structured covariance matrix
1o represent any overlapped relation between route alternatives. The fundamental ideas of the model were
presented in Yai ez al. (1993) and Yai and Iwakura (1994). The assumptions introduced in the model may be
more realistic for route choice behaviors on a dense network than the strict assumption of the independent
alternative property of the multinomial logit model. As the nested logit model assumes an identical dispersion
parameter between two modeling levels for all trip makers, the model has difficulty in expressing individual
choice-tree structures, To improve the applicability of the multinomial probit model to route choice
behaviors, we introduce a function which represents an overlapped relation between pairs of alternatives and
propose a multinomial probit model in which the structured covariance matrix uses the function in order to
consider the individual choice-tree structures in the matrix and the estimatability of the new alternative's
covariances. After examining the applicability of the multinomial probit model using empirical route choice
data in a Tokyo metropolitan region, we also propose a method for evaluating consumer benefits on
complicated networks based on the multinomial probit model. ) 1997 Elsevier Science Ltd

1. INTRODUCTION

The applications of the multinomial probit model have not been adcqualely successful in spl(e of
its advantages in flexibility of the modcl form. Certainly, the y of the

process has deterred its use, pared to the wide applications of the multi ial logit models.
Early advances in the estimation method of the multinomial probit model were achieved before
the early 80s, by Daganzo (1977), Lerman and Manski (1981), Daganzo and Sheffi (1982) and
Sheffi et al. (1982). Their work discussed alternative methods for estimating the covariance matrix
simultaneously with utility function parameters. No accurate method was found during these
earlier advances and thus the multinomial probit model was not widely applied (Horowitz et al.,
1982; Horowitz, 1991). In the 1980s, most discrete choice models were calibrated by the multino-
mial logit model or ion forms of the mul ial logit such as the nested logit model.
Although most results were satisfactory in representing travel behaviors of modal choices, several
behaviors which do not satisfy the assumptions of the multinomial logit model exist. Most prob-
ably, the cause of such behaviors is the |n|erdcpcndency of choice alternatives.

Recently, there have been ad | ial probit imation (McFadden, 1989;
Pakes and Pollard, 1989; Bunch, 1991; Bolduc and Ben-Akiva, 1991; Bolduc, 1992; Geweke et al.,
1994). The method of simulated moments proposed by McFadden seems to encourage multi-
nomial probit applications because of its computational efficiency in seeking model parameters.
Bolduc focused on the estimation of the multinomial probit model with a large choice set using
auto-regressive errors with distance related functions among alternatives for simplifying its
covariance matrix. Bunch simplified the multinomial probit model’s covariance matrix with his
transformation method which lessens the estimation problem. Geweke et al. compared several

195



Structured Covariance MNP (2)

Tokyo Metropolitan has highly dense railway network |
= route overlapping problem

=

ailway line : about 130
tation : about 1800
Passengers . 40miliion/day

Cong. rate: max over 200%
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Structured Covariance MNP (3)

In the overlap network that has correlation between
routes, Logit model is susceptible to error by lIA

property. Overlap =correlation
(b)
0 M) a 0
Probit is better ? ©

« Difficult to setting covariance matrix for each OD pair
= structured covariance by divide into two error

« Difficult to parameter estimation. (multi-dimensional Integral)
= reduce computational time using simulation methods

4

th Rout
8, — gi eng +gl oute

| N
Error of route specific

U=V,
Error of depend on route length



Structured Covariance MNP (4)

Variance-Covariance structure in Error term

Error of depend on route length

0 Error of route specific
g =¢'+¢°

(L, Ly = Ly

+ogl

2=3'+2°

Error of depend on route length
Variance of route utility increases in
proportion to the route length.

Var(e,')=L, o
Covariance between routes increases

in proportion to the length of route
overlap.

| 1 2
Cov(e, ,¢,)=L, 0

T =gl le Lz Lm
y : T :

\Lix Lp Ly,

l Simplify use cov.
ratio

('7[1 +1 npL, - nl,

Error of route specific
- independent of each route (cov=0)

y 0'_ 0 2
Cowe, ,¢, )=0,", g=r

=0, qg=#r

o| My Tl +1 -l
0 : : . :

\ g il o milg +]
2 .
o
(=
UO

Estimate only cov. ratio !

L, :length of route r
L,, :overlap length between route r and g
o? :variance of unit length



Structured Covariance MNP (5)
Apply to the SCMNL for The 18th master plan for urban

railway network in TMA (2000)

Ex : Oomiya to Kanda station

(2) Akabane

(1) Omiya
| | (1O
E E |
O: Shonan-Shinjuku line [ : Keihin-Tohoku line [ : Yamanote line (2) O 3
[7]: Takasaki line O: Utsunomiya line \ 8 ( )
et G g
Estimation results AT
\ /\ )
parameter t-value <
in—vehicle time -0.0943 -8.09
access/egress time -0.127 -11.7 =
transfar time -0.112 -10.7 —
cost ~0.002 -398  Prediction results
congestion index —0.00869 -3.34 Obs MNL SCMNP
Ui 0.436 2.71 Utsunomiya + Yamanote 33% 28% 27%
: 52% 47%
Adj—0 2 0.39 Utsunomiya + Keihin—Tohoku 15% 24% 20%
# of Sample 121 8 Keihin—Tohoku 53% 47% 52%

To achieve a high prediction accuracy by the

relaxation of route overlap (Obs £10% in all route)



Mixed Logit Model S

Mixed Loigt (Train 2000)
High flexible structure using two error term.

Utility function

U =V +nHv.

1

vdist.: assume any G function

- [ID Gamble (Logit Kernel) = MNL
- any G function (GEV Kernel) = NL, PCL, CNL, GNL:--

n dist.: basically assume “Normal dist.”

In the case of normal distribution takes a non-realistic value, it can
assume a variety of probability distribution (triangular distribution, cutting
normal distribution, lognormal distribution, Rayleigh distribution, etc.).

« Error Component: approximate to any GEV model
« Random Coefficient: Consider the heterogeneity



Error Component: NL (1)

Approximation of Nested Logit (NL)
Describe the nest (covariance) using structured .

Ex: model choice Normal = nest
Car - U_ =pX_ + + ke
Bus Ubus =p Xbus +[E— T 5s
_ Rail Urail =p Xrail O ansit Dransid Y rait
Transit nest } D Gamble = Logit

Veait ¥O ansitnt

Choice prob. p _f e railCransitlansi
7

O e n 'fO r rail car Vbus +Gtransitntransit Vrail +Otransitntransit ( transit ) transit
m e te +e
ransi

l ntransit ~ N (0’1)
N

Vrail +Gtransitntranist

Choice prob. p _ ]
(SlmU|ated) rail N N char + eVbus+O-transitnnﬂNanist + eVrail+atransizntrNanist




Error Component: NL (2)

Approximation of Nested Logit (NL)

Note that variance-covariance matrix I1s inconsistent

with normal NL
Normal NL

Car - )

o 0 0
Bus 0 Lz th’ansit
Rail 0 o o’

. transit —
Transit nest

Approximated NL based on MXL
/] | % &
0 0 0 o> 0 0 o’ 0 0
X 02 + O 02 0 = O Gtiansit + 02 Gtiansit
0 0 0'2 0

transit transit
2 2 2
+O

2 2
transit transit

transit transit




Error Component: CNL

Approximation of Cross Nested Logit (CNL)
Describe the nest (covariance) using structured .

Road nest

Car Ucar — ,B)( car O-road 77 road + Vcar

Bus Ubus — IB)( bus + Vbus

Rail U = PX i Vi

Transit nest
n 1%
- o’ 0 g2 0 0 Mansic> Troaa = N(0,1)
Zm A )
0 _— 0 0@ &
oad FO O i 0
= Grzoad Grzoad + Gtzmnsit +o’ zzmnsit
0 tiansit tiansit ’




Error Component: SCL

Approximation of Spatial Correlation Logit
Describe the spatial correlation using structured ».

Uzornl = ﬁXzornl +0 nl +0 7/’2 + Vzornl

Uzorn2 = ﬁXzom2 HOo 171 +t0 772 +0 773 I + Vzorn2
Uzorn3 = /3Xzorn3 |O 772 0O 173 0O 174 + Vzorn3

Uzorn4 = ﬁxzorn4 O 773 O n4 + vzorn4
n 14 g
2 ¥ 2 2 2
20, O, 0 2 0 0 0 o, +0 o 0 0
2 2 2 2 2 2 2
o 300 o, 0 .\ 0 o> 0 0 _ o, 200 +0 (op
0 |o, 3o, |0 0 0 o 0 0 o, 200 +0 o,
2
0 0 o, 20, 0 0 0 o 0 0 o, o, +of

5113 = N(Oal)



Error Component: HL

Approximation of heteroscedastic Logit

Assume the different error variance in each alternatives'

*|dentification problem occur in the case of not fixed one of the
parameters to zero at least.

Ui =PXetr O rillear tVeur o’ +0° 0 0
Uiis = PX b + CpuisMous  Vius
Uit = PX ot ¥ O raitThait +Vai

Dears Mous > Mrait = N (Oal)

Assume heteroscedastic in error

- Car: Low travel time reliability - Rail: High travel time reliability
=Error variance is large =Error variance is small

¥ consider only heteroscedasitc (IID assumption is not relaxed)



Random Coefficient (1)

Taste heterogeneity of decision maker

Parameters defined homogeneously in population. However,
decision maker n has different taste ( = heterogeneity)

Ucar,n T Ié?car,n + gcar,n Ucar,n T %Tvcar,n + gcar,n

Segmentation (observable heterogeneity)

- Constant by gender @ 51e's constant ag+a,

Ucar,n :{[aO]_I_ al * malen) + IBITcar,n + gcar,n

Female’s constant; oy

- parameter by gender .
male’s parameter: 3,

Ucar,n =, {ﬂl}k male, * Tcar,n +[lgz ]k (1 —male, )* Tcar,n

Female's parameter:
Be - male, = female,



Random Coefficient (2)

Parameter distribution (unobservable heterogeneity)

Assume the heterogeneity of parameter

=|n the case of parameter following Normal dist., we estimate
the dist.’s hyper-parameter (mean and variance).

u.,.=BI.,. +V

car,n car,n car,n

B, ~N(B,0?)

U

car,n

Ubus,n — IET;aus,n + O-nnTbus,n
Urail,n — IBT;"ail,n + GnnT;”ail,n n,= N(O,l)

E]-;:ar,n + GUnT

car,n

—B

i

,O . unknown parameter

Hyper-parameter can describe using observable variables

B, =v,+rincome, [Bdepend on observable income variable



Summary of open-form models

Strengths

% Describe correlation between alternatives’ by EC
« MNP: all alternatives’ (relax and reduce by structuring)
« MXL: depend on approximated model

< Describe heterogeneity by RC
« Segmentation, parameter distribution---

Limitations

% High calculation cost in parameter estimation

« Open-form model has high dimensional integration.

« Recently, proposed high speed estimation methods

Ex: Bayesian estimation (MCMC) = see Train’s book
MACML: analytical integration by Bhat et al.(2011)
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Discrete choice model

(Not Supervised Learning, Clustering...)

using sensing data



Heavy Rainfall Disaster in Japan <0

¢ Tohoku-Kanto Heavy Rainfall (Sep. 9-11, 2015)
~ : AN o R et e 3 R
- 13.._,

Al » v
5 3

Kinigawa river dike collapsed

Date: Sep. 9-11, 2015

Maximum rainfall: 551mm/day
# of deaths: 14 Heavy rainfall by huge extratropical

# of flooded house : over 100,000 cyclone




Heavy Rainfall Disaster in Japan
2015/9/1011:10




Research Object

Understanding behavior at disaster time

* Previous study (Behavior at disaster time) is quit limited.

- New transpiration data collection system (called ETC 2.0 probe)
is available since 2014

1. Verify the effectiveness of new data for route choice
analysis at disaster time

2. Apply to the drivers route choice simulation using new
data (ETC 2.0) at disaster time

Analysis target IRORTZ"
%»-5;439?; @/ 444444
Tohoku-Kanto heavy rainfall (Sep, 2015) — = -
[Data Se.t ] @543‘9/155;;, 543916 54«:(:;5 x‘?“OTJ__
Sep. 2015 (Tmonth) I 9)5111T 13858
/543905 s 541323 P 0
[Time series] S AL\ A

Before disaster (normal) . Sep 1-9, 2015
Rainfall disaster time . Sep 10-13, 2015
After disaster (normal) . Sep 14-30, 2015



About ETC 2.0 probe data

What is ETC 2.0 ?

« Smart device “Electronic Tall Collection (ETC) + Service”
« This project organized by MLIT & | ITSZRRvE
« Device collected vehicle GPS log o

R EEAEEER
ITSRiKY b RitT—E 2
(DSRC) ez

= o

" ETCH—EZX
ITSZiY F(DSRC) Pk iy

REFEHY -2




Probe data In Kinugawa area

' 2@%‘@5,@14% : .9 Sep 2015 - :H.ﬁuﬁfnﬁﬁuuﬁ ¢ 10 Sep 2015
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Route choice: macroscopic

« Aggregate the 8 pattern OD traffic volume in flooded area.

« Decreasing OD: D~@® by shut down R294 and R24
» Increasing OD: ®, ® (it is not shut down)

= Driver make a detour to avoid a flooded area (1.6 times)

9

=9A3H
=9R10H
9/ 11H

"
80
56 54
53 50

# of Driver

4 @ SEmEsRO




Route choice : microscopic

Road network

« Setting the simple main road network (use only high standard
road) in flooded area.

Origin |

3 Destination



Setting using sensing data

Travel time

« Setting the average travel time in
normal time and rainfall time by
ETC 2.0 probe data

e Travel time has Increased 4times

44. 5 42 8

o

= TEROAIR)
" KEEZOA1A)

32.8

W W S
oS ol

N
($a}

Average travel time (min)

—_— N
o o1 O o1 O

1 2 3 4 5 6 . 1 8
Block OD Pair

9 10 11
Block Block Block



Route choice simulation

Test route choice simulation assuming OD traffic volume to 1000
units on 3 Sep. 2015 (Normal) and 11 Sep. 2015 (disaster)

3 Sep. (Normal) 9 7

1000~800
800~600

11, Sep. (Rainfall) [§




Conclusions and future work

€ Conclusions

« We clarified the usability of ETC 2.0 probe data to estimate
road network state at disaster time.

« We suggested the possibility of route choice simulation
using ETC 2.0
€ Future work (on going)

« Integration of some simulation system
= Travel activity simulation + urban meteorology simulation

« Real time traffic volume estimation using ETC 2.0

« Apply to large-scale analysis (whole Tokyo area) and
multiple disaster simulation (e.g. earthquake & heavy rain)



