The 16th Summer School 2017

交通行動における 合理性・非合理性の分析

ANALYSIS OF RATIONALITY / IRRATIONALITY IN TRAVEL BEHAVIOR

TEAM M (HIROSHIMA UNIVERSITY)

FUKUNAGA MATSUYAMA ISHIKAWA KAKUJO MORIWAKI

Hypothesis of Hiroshima Univ. in 2014

Many travel behavior take twice as much time as alternative time

2017 Focus Point

2017 Are they choosing a *slower* travel mode among all alternative?

We focus on Rationality of travel mode choice

Defining Rationality

Rational	selected mode		
	= alternative one takes minimum time		
Irrational	selected mode		
	≠alternative one takes minimum time		

In fact, 56% trip didn't behave rational choose of travel mode

- ${f \textcircled{1}}$ Analyzing the tendency of Rational / Irrational behavior
- 2 Comparing Value of travel time of Rational and Irrational by using estimated parameter

Rate of the difference acording to sex

Males prefer to take rational mode

Rate of the difference acording to puprose

Business trip have tendency to take irrational mode

Rate of the difference according to trip mode

Walk and bus are irrational

Analysis focused on travel mode

Females prefer to take bus

Analysis focused on travel mode

Many 50's take bus

Binary logit model

Utility function (model 1)

$$U_{Rational} = \beta_0 + \beta_1 * time + \beta_2 * cost + \beta_3 * dummy_{sex}$$
$$+\beta_4 * dummy_{car} + \beta_5 * dummy_{Business} + \varepsilon$$
$$U_{Irrational} = 0$$

 β_0 : constant

 β_1 : time [min]

 β_2 : cost[yen]

 β_3 : sex dummy

 β_4 : car dummy

 β_5 : business trip dummy

Model structure

Estimation Results (Binary Logit Model)

Variable	Parameters	Std. Error	Z value	Pr(z)	
Constant	-1.333	0.128	-10.403	2.2e-16	***
Time [min]	-0.165	0.381	-0.433	0.665	
Cost [yen]	0.127	0.038	3.379	0.000728	***
Dummy [sex]	0.145	0.152	0.953	0.341	
Dummy [car]	2.623	0.142	18.451	2.2e-16	***
Dummy [business]	-0.992	0.271	-3.660	0.000253	***
LLO	-1054.97				
LL1	-777.90				
Rho	0.262				
Rho.adj	0.260				

Multinomial logit model

Utility function (model 2)

```
\begin{array}{ll} U_{Train} = \beta_{1} + (k*\beta_{5} + l*\beta_{6})*time_{T} + (k*\beta_{7} + l*\beta_{8})*cost_{T} + \varepsilon_{T} \\ U_{Bus} = \beta_{2} + (k*\beta_{5} + l*\beta_{6})*time_{Bu} + (k*\beta_{7} + l*\beta_{8})*cost_{Bu} \\ + \beta_{9}*dummy_{sex} + \beta_{10}*dummy_{age50} + \varepsilon_{Bu} \\ U_{Car} = \beta_{3} + (k*\beta_{5} + l*\beta_{6})*time_{C} + (k*\beta_{7} + l*\beta_{8})*cost_{C} + \varepsilon_{C} \\ U_{Bike} = \beta_{4} + (k*\beta_{5} + l*\beta_{6})*time_{Bi} + (k*\beta_{7} + l*\beta_{8})*cost_{Bi} \\ + \beta_{9}*dummy_{sex} + \varepsilon_{Bi} \\ U_{Walk} = (k*\beta_{5} + l*\beta_{6})*time_{W} + (k*\beta_{7} + l*\beta_{8})*cost_{W} + \varepsilon_{W} \end{array}
```

 β_1 : constant(Train) β_2 : constant(Bus) β_3 : constant(Car)

 β_4 : constant(Bike) β_5 : rational dummy(time) β_6 : irrational dummy(time) β_7 : rational dummy(cost) β_8 : irrational dummy(cost) β_9 : sex dummy β_{10} : 50s dummy

k = 1 if i = Rational

l = 0 if i = Rational

0 if i = Irational

1 if i = Irational

Model structure

Estimation Results (Multinomial Logit Model)

Variable	Parameters	Std. Error	Z Value	Pr (z)	
Constant(Train)	1.538	0.140	-10.981	2.2e-16	***
Constant(Bus)	9.088	0.576	-15.791	2.2e-16	***
Constant(Car)	1.325	0.113	-11.778	2.2e-16	***
Constant(Bike)	1.830	0.155	-11.810	2.2e-16	***
Dummy[Rational_Time]	9.253	0.577	-16.033	2.2e-16	***
Dummy[Irrational_Time]	2.730	0.354	-7.722	1.146e-14	***
Dummy[Rational_Cost]	0.622	0.068	9.090	2.2e-16	***
Dummy[Irrational_Cost]	0.817	0.058	14.018	2.2e-16	***
Dummy [sex]	2.053	0.174	11.772	2.2e-16	***
Dummy [50's]	4.739	0.541	8.752	2.2e-16	***
LLO	2449.565				
LL1	1365.922				
Rho	0.442				
Rho. adj	0.438				

Policy Simulation